
Compact BVH Storage for Ray Tracing and Photon Mapping

Bartosz Fabianowski and John Dingliana

GV2 Group, Trinity College, Dublin, Ireland

Abstract
The bounding volume hierarchy (BVH) is becoming an increasingly popular spatial index in high-performance
ray tracing [WMH∗07]. Specifically, binary hierarchies of axis-aligned bounding boxes are used. We present a
compact representation that eliminates redundant information, storing the same BVH nodes in 43%–50% less
memory. Algorithms are described that allow the compact representation to efficiently be traversed. We demon-
strate and analyze the application to ray tracing and photon mapping on NVidia’s CUDA platform [NVI09b], an
example of the emerging trend toward manycore architectures. In both cases, memory and bandwidth requirements
are reduced. For photon mapping, a significant speed-up is obtained.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Raytracing

1. Introduction

Ray tracing [Whi80] and photon mapping [Jen96] make
extensive use of geometric searches to locate visible sur-
faces and incident illumination. By building a hierarchi-
cal spatial index, the complexity of such searches can be
reduced from O(n) to O(logn). In ray tracing, bounding
volume hierarchies (BVHs) [RW80] are gaining popularity,
supplementing kd-trees [Ben75] as the indexing method of
choice [WMH∗07] due to their ability to accommodate dy-
namic scene changes [LYT06]. Photon mapping, tradition-
ally based on kd-trees, has also recently been shown to effi-
ciently work with BVHs [FD09].

While the term BVH can refer to any hierarchy of ar-
bitrary bounding volumes, in the context of ray tracing, it
has become virtually synonymous with a binary hierarchy of
axis-aligned bounding boxes (AABBs) [WMH∗07]. In this
paper, BVH always refers to a binary hierarchy of AABBs.
Such a BVH requires less memory than a kd-tree [GPSS97]
but still constitutes an overhead over storing only raw data.

We propose a method that reduces the BVH’s memory
footprint by 43%–50% while eliminating only redundant
information. The lower storage requirements translate into
fewer memory reads while searching through the BVH. We
demonstrate the effects of this on NVidia’s CUDA platform
[NVI09b] where main memory accesses suffer from high la-

tency. Ray-tracing is accelerated slightly, photon mapping
significantly by our BVH representation.

2. Related work

Hierarchical spatial indexes can significantly speed up geo-
metric searches. As the index is recursively traversed from
its root, any node falling outside the query domain may be
safely ignored along with its children. An acceleration is ob-
tained if traversal is cheap and culls away large subsets of
data. For ray tracing, indexes built according to the surface
area heuristic (SAH) [MB90] are highly successful.

An index may partition space or objects. Space parti-
tioning using kd-trees has long been the preferred method
for ray tracing. The simplicity of kd-tree traversal enabled
real-time ray tracing on clusters of PCs [WSBW01] and
in CUDA [BAGJ08]. Kd-trees, however, cannot adapt to
dynamic changes [WMH∗07]. This has led to a renewed
interest in object subdivision using BVHs. Initially pro-
posed as a hierarchy of oriented bounding boxes [RW80],
BVHs are now virtually synonymous with binary trees of
axis-aligned bounding boxes (AABBs). A BVH can effi-
ciently be refitted or partially rebuilt when the scene changes
[LYT06, WBS07] and requires less memory than a kd-tree.

Aiming to combine the simple traversal of kd-trees with
the lower memory requirements of BVHs, several authors



2 Bartosz Fabianowski and John Dingliana / Compact BVH Storage for Ray Tracing and Photon Mapping

have proposed hybrid indexing structures. Bounding inter-
val hierarchies (BIHs) [WK06], H-trees [HHS06] and B-
kd-trees [WMS06] follow the same basic idea: Instead of
storing the full bounding box of each child, only the bound-
ing planes for a single splitting axis are recorded. Traversal
is similar to a kd-tree but refitting and selective rebuilding
are possible as sibling nodes may now overlap. Memory re-
quirements are lower than those of a BVH. The main dis-
advantage is a looser bounding of space. To improve tight-
ness, H-trees contain interspersed AABB nodes cutting off
excessive empty space; the single slab hierarchy [EWM08]
allows the planes recorded for sibling nodes to lie on dif-
ferent axes; ray-strips [LYM07] and ReduceM [LYTM08]
combine a tightly fitting BVH over triangle strips with more
lightweight BIHs inside the strips.

BVH memory requirements can significantly be reduced
without such fundamental changes to the indexing structure.
By reordering the nodes to implicitly encode the hierarchy,
some [Smi98] or all [CSE06] child pointers are eliminated.
If leaves contain small numbers of elements, it may be more
efficient to store inner nodes only and visit all elements when
their parent node is traversed [FM86]. A quantized, lower
precision encoding of node bounds relative to their parent
[Mah05, CSE06] reduces the memory footprint at the cost
of introducing conversion operations during traversal. These
techniques are also proposed in the context of BVHs for col-
lision detection [Ter01] and coordinate quantization is used
with kd-trees as well [HMHB06]. Further savings in storage
space are possible by applying a compression algorithm to
the BVH [KMKY09], allowing very large models to be pro-
cessed but incurring a decompression cost.

On previous computer generations, BVH traversal may be
dominated by the cost of floating point operations. When a
ray’s entry point into a node is sought, intersections with the
three back-facing bounding planes are irrelevant and may be
skipped [Woo90]. For both entry and exit point, intersecting
the ray with bounding planes coinciding with the bounds of
a parent node is redundant and can be omitted [ST94]. Nei-
ther technique provides a reduction in memory footprint or a
speed-up on current hardware with fast floating point units.

The motivation for our work is photon mapping. In this
algorithm, photons emitted by the light sources are traced
through the scene and their hit points recorded in the photon
map, a balanced kd-tree [Jen96] or one built according to the
voxel volume heuristic [WGS04]. Illumination at a visible
surface point is computed by locating the k nearest hits and
summing their contributions.

We assign each photon hit a contribution radius during the
tracing phase instead [FD09], using a combination of photon
path densities [HHK∗07] and photon differentials [SFES07].
When computing illumination, not the k nearest photon hits
but all those whose contribution radii overlap the visible
point are sought. As every photon hit’s region of contribu-
tion is precisely known, the kd-tree can be replaced with a

tight BVH. We employ a fast linear BVH build method orig-
inally proposed for ray tracing [LGS∗09].

Our target platform is CUDA [NVI09b], a manycore ar-
chitecture built on current NVidia GPU hardware. High
computational speed is provided but memory is scarce and
slow. Each main memory access carries a latency of approxi-
mately 400 cycles with only minimal caching if it is accessed
through the GPU’s texturing units [NVI09a]. A BVH repre-
sentation is therefore needed that has a low memory foot-
print and requires few reads during traversal.

3. BVH and hybrid structures

In a naïve BVH representation, each node holds six floating
point values representing axis-aligned bounding planes and
either two child pointers (inner node) or an element pointer
and an element count (leaf node). Using 32-bit floating point
numbers and pointers, this corresponds to 32 bytes per node.
Replacing the pointers with 32-bit indexes yields the same
size but allows a few bits to be stolen for bitmasks, as done
extensively in more compact representations.

Marking the last element in a leaf instead of storing an
element count enables two optimizations. If leaf bounding
boxes are not to be recorded [FM86], leaf nodes can be omit-
ted, storing their element index in the parent instead. Alter-
natively, one of the two child indices may be eliminated by
allocating sibling nodes together and referencing both with
a single index [Smi98], leading to a node size of 28 bytes.
Replacing the 32-bit floating point bounds with quantized
values allows for a further reduction in node size to 20 bytes
[Ter01] or even just 12 bytes [Mah05].

In the single slab hierarchy [EWM08], only one bounding
plane instead of six is stored per node, leading to a size of 8
bytes. The H-tree [HHS06] uses nodes of varying types, each
occupying either 16 or 32 bytes. BIH [WK06] and B-kd-tree
[WMS06] have a different storage organization, recording
both children’s bounds in the parent node. The BIH uses one
plane per child, translating into 12-byte nodes. In the B-kd-
tree, each child is bounded by two planes with 22-bit preci-
sion, nodes occupying 16 bytes each.

3.1. Ray tracing traversal

The slabs test [KK86] makes BVH traversal simple and ef-
ficient. For each coordinate axis, a node’s two bounding
planes enclose an interval t ∈ [ak,bk] of the ray ~x = ~o+ t~d.
The intersection [a,b] of these intervals is the part of the ray
that passes through the node (fig. 1, left). If the intervals are
disjunct and their intersection is empty, the node is missed
(fig. 1, right). For rays of finite length, the intersection is fur-
thermore bounded by a≥ 0 and b≤ bmax.

Algorithm 1 gives a pseudocode implementation. Vectors
~m and ~M describe the node’s left and right bounding planes
for the three coordinate axes. Where the ray direction has



Bartosz Fabianowski and John Dingliana / Compact BVH Storage for Ray Tracing and Photon Mapping 3

Figure 1: 2D slabs test. Node bounding planes enclose ray
intervals on the x (red) and y (green) axes. Left: The intervals
overlap where the ray passes through a node. Right: If the
node is missed, they are disjunct.

negative sign, the front and back planes must be swapped.
This is done branchlessly by using the minimum and maxi-
mum of t1, t2 as the interval bounds (lines 6–7).

Algorithm 1 Slabs test for ray~o+ t · ~d and node
(
~m, ~M

)
1: a← 0
2: b← bmax
3: for k ∈ {x,y,z} do
4: t1← (~mk−~ok)/~dk

5: t2←
(
~Mk−~ok

)
/~dk

6: a←max(a,min(t1, t2))
7: b←min(b,max(t1, t2))
8: end for
9: if a≤ b then

10: visit node’s children
11: end if

When the ray intersects a node, both of its children must
be visited. One child is tended immediately, the other’s index
is pushed onto a stack. It is desirable to visit the closer child
first. If a surface hit is found there, the ray’s bmax decreases
to the hit distance, culling any nodes behind it. Although the
actual order along the ray is unknown, there exists a simple
heuristic. The coordinate axis on which each node was orig-
inally split to produce its two children is recorded. Children
are then visited left-right or right-left according to the ray
direction’s sign for that coordinate [Mah05].

Quantized BVH representations store child AABBs rela-
tive to their parent. In addition to a child index, the parent’s
complete bounds must therefore be pushed onto the stack
during traversal. Other indexing structures that do not record
full AABBs also put additional items on the stack. The slabs
test is not directly applicable to them as the information to
compute an interval [ak,bk] for each coordinate axis is not
available. Instead, the parent’s interval [a,b] is passed on via
the stack and clamped by a child’s bounding plane(s).

The BIH and the B-kd-tree, which store child bounding
planes at their parent, obtain intervals [al ,bl ] and [ar,br] for
both children in this way. Having these intervals available at
the parent allows children missed by the ray to be skipped
immediately. Additionally, children can be visited in the ac-
tual order of their entry points al and ar. By performing the
slabs test for two sibling nodes together, the same effect can
be achieved for BVHs [AL09].

3.2. Photon mapping traversal

The aim of a BVH photon map traversal is to find the pho-
ton hits that overlap a query point ~p [FD09]. To determine
whether a node’s children are to be visited, the position of
~p relative to the bounds ~m, ~M is computed (alg. 2). If ~p lies
inside the node, both children are visited, one immediately
and the other by pushing its index onto the stack. Traversal
order is irrelevant as no further culling can be achieved.

Algorithm 2 Photon map test for point ~p and node
(
~m, ~M

)
1: if ~mx <~px and

~my <~py and
~mz <~pz and
~Mx >~px and
~My >~py and
~Mz >~pz then

2: visit node’s children
3: end if

4. Compact BVH

We propose a compact BVH representation based on the in-
sight that in a hierarchy of AABBs, each parent bounding
plane is inherited by at least one of the children. As we will
show, this limits the number of new bounding planes to six
when a node’s two children are considered together.

For every coordinate axis, a child may inherit the parent’s
left bounding plane, right bounding plane, both or none. The
number of bounding planes a node does not inherit from its
parent thus varies between zero and six. Considering both
children together, however, we observe that whenever one
introduces a new bounding plane, the other must inherit the
corresponding plane from the parent (see fig. 2 for 2D ex-
amples). If it were not to, the second child would either have
to extend outside the parent or be entirely interior like its
sibling, the parent thus not providing the tightest possible
AABB around them. Neither is allowed in a BVH.

Our BVH representation encodes two sibling nodes in 32
bytes: Six 32-bit floating point values (~m, ~M) represent the
new minimum and maximum bounding planes for each axis.
Two 28-bit indices link to the children of both nodes. A pair
of 3-bit masks (~l,~L) assigns each new plane to either the left
or right child. The final 2 bits mark the children as either



4 Bartosz Fabianowski and John Dingliana / Compact BVH Storage for Ray Tracing and Photon Mapping

Figure 2: 2D illustration of the new bounding planes intro-
duced (bold) by the two children (pink, green) of a parent
node (dashed) in four different cases.

inner nodes or leaves. In the case of a leaf, the 28-bit index
points to the first element it contains.

As described in section 3, storing the same information
in a traditional BVH requires at least 28 bytes per node (six
bounding planes and a child index). By encoding two chil-
dren in 32 bytes, we reduce BVH storage requirements by
42.8%. It is important to note that no information is lost and
bounding tightness maintained. Only redundant information
is eliminated. The overall BVH construction process is un-
affected and no additional cost is incurred. Only the way in
which sibling node pairs are stored in memory is changed.

Whenever both children inherit the same bounding plane
from their parent, no new plane is introduced. To maintain
constant storage size per node and avoid any special cases,
we always allocate 32 bytes for a pair of siblings and store
six planes. Should no new plane be introduced, the parent’s
bound is simply replicated and assigned to the left child.

4.1. Ray tracing traversal

In our compact representation, inherited bounding planes are
not readily available when traversing a node. The slabs test
(alg. 1) must be modified to account for this and to compute
two intervals [al ,bl ], [ar,br] for the two children stored to-
gether. As with hybrid indexing structures, we maintain the
current node index and interval [a,b] during traversal, push-
ing all three values onto the stack when traversal branches
(see section 3.1).

Traversal of a sibling node pair begins by initializing the
intervals [al ,bl ] and [ar,br] to the parent’s [a,b] (alg. 3, lines
1–2). If this was popped off the stack, the intervals are ad-
ditionally clamped against the ray’s current length bmax. For
each of the three coordinate axes, values t1 and t2 are com-
puted exactly as in the slabs test (alg. 1 and 3, lines 4–5).

Lines 7–8 distribute these interval bounds to the two chil-
dren. When~lk = 1, the stored minimum bounding plane be-
longs to the left child and t1 is written to t1,l . Otherwise, the
plane belongs to the right child and t1 is written to t1,r. The
value of t2 is analogously copied into t2,l or t2,r.

The child inheriting the parent’s plane is assigned −t3 in-
stead of t1 and t3 instead of t2. This value, calculated in line
6, leads to an unbounded interval with the open side where
the inherited plane would have been. Ignoring an inherited
bound in this way introduces no error as its effect is already
contained in the interval [a,b] passed down during traversal.
Lines 9–12 are identical to lines 6–7 of the original slabs
test, replicated to cover both children. Results are evaluated
from line 14 onward, visiting the children for which a non-
empty interval has been computed in the order of their entry
points al , ar along the ray.

Algorithm 3 Compact BVH slabs test for ray~o+t · ~d, parent
interval [a,b] and child nodes encoded as ~m, ~M,~l,~L

1: al ,ar← a
2: bl ,br←min(b,bmax)
3: for k ∈ {x,y,z} do
4: t1← (~mk−~ok)/~dk

5: t2←
(
~Mk−~ok

)
/~dk

6: t3←∞/~dk
7:

(
t1,l , t1,r

)
← if~lk then (t1,−t3) else (−t3, t1)

8:
(
t2,l , t2,r

)
← if~Lk then (t2, t3) else (t3, t2)

9: al ←max
(
al ,min

(
t1,l , t2,l

))
10: bl ←min

(
bl ,max

(
t1,l , t2,l

))
11: ar←max

(
ar,min

(
t1,r, t2,r

))
12: br←min

(
br,max

(
t1,r, t2,r

))
13: end for
14: if al ≤ bl and ar ≤ br then
15: visit both children
16: else if al ≤ bl then
17: visit left child
18: else if ar ≤ br then
19: visit right child
20: end if

When popping an interval [a,b] off the stack, we first
check whether a > bmax. If so, a surface hit has already been
found closer to the ray origin than the entry point and the
node at the top of the stack can safely be ignored.

Our traversal algorithm performs more operations than
the original slabs test but also handles two children at once.
Main memory bandwidth is reduced as 32 bytes instead of
2×28 bytes are read per pair of nodes. The conditional state-
ments in lines 7–8 can be expressed using the ternary opera-
tor and compiled into branchless code on hardware support-
ing predicated instructions.



Bartosz Fabianowski and John Dingliana / Compact BVH Storage for Ray Tracing and Photon Mapping 5

4.2. Photon mapping traversal

The main motivation for our work are BVH photon maps.
Algorithm 4 illustrates the traversal efficiency of our com-
pact BVH representation in photon mapping. Compared to
algorithm 2, only ten additional bitwise operations (six shifts
�, one negation ¬, one conjunction ∨, two disjunctions ∧)
are necessary to traverse two sibling nodes instead of one.

Line 1 constructs a bitmask miss indicating which of the
six bounding planes the query point ~p lies outside. The result
of each comparison, when cast into an integer, is either 0 or
1. By shifting these into position, the mask is built without
branching. In line 2, a corresponding bitmask le f t is assem-
bled that indicates whether each of the planes bounds the left
or right child. This step is necessary as we store the informa-
tion in two 3-bit fields~l,~L stolen from the child indices.

If miss contains only zeroes, neither of the children is
missed and both must be visited (lines 3–4). Otherwise, the
query point lies outside at least one of the children. If no bit
is set in both le f t and miss, ~p is inside all planes bounding
the left child (lines 5–6). Similarly, if no bit is set in both the
complement of le f t and miss, ~p is inside the right child (lines
7–8). Should neither case apply, both children are missed.

Algorithm 4 Compact BVH photon map test for query point
~p and child nodes encoded as ~m, ~M,~l,~L

1: miss← ~mx ≥ ~px � 5 ∨
~my ≥ ~py � 4 ∨
~mz ≥ ~pz � 3 ∨
~Mx ≤ ~px � 2 ∨
~My ≤ ~py � 1 ∨
~Mz ≤ ~pz

2: le f t←~l� 3∨~L
3: if not miss then
4: visit both children
5: else if not le f t ∧miss then
6: visit left child
7: else if not ¬le f t ∧miss then
8: visit right child
9: end if

Contrary to ray tracing traversal (section 4.1), no infor-
mation other than the node index needs to be pushed on the
stack when traversal branches. Whenever algorithm 4 is exe-
cuted for a pair of sibling nodes, it is already known that the
query point ~p lies inside the six planes bounding their parent.
For any planes inherited by the children, the corresponding
miss bit, if computed or stored, would thus always be zero.

5. Results

We have evaluated our compact BVH representation in the
context of both ray tracing and photon mapping, using six
scenes of varying complexity (fig. 3). Results are averaged
over a flight through each scene, ensuring that the impact of

different viewpoints is taken into account. The benchmark
platform is CUDA [NVI09b] running on an NVidia GeForce
GTX 280 under GNU/Linux.

5.1. Ray tracing

For ray tracing, we evaluate our BVH representation in a
reimplementation of the currently fastest CUDA ray tracer
[AL09]. The BVH is built offline, using the SAH [MB90]
and early split clipping [EG07] to prevent degradation when
large triangles are present. Images are rendered at 10242 res-
olution with one eye ray and one shadow ray per pixel.

Each ray is traced by an independent thread using a sep-
arate traversal stack. As the fast shared memory available in
CUDA is too small, stacks are located in slow main memory
[BAGJ08]. Persistent threads [AL09] avoid an inefficiency
in the GPU’s scheduler, launching only as many threads as
are required to saturate the parallel processing units and then
fetching rays from a global job queue.

The baseline BVH representation we compare against
[AL09] stores and traverses pairs of sibling nodes together.
For each pair, 2× 6 bounding planes and two child indices
are recorded, occupying 56 bytes. Our representation re-
quires only 32 bytes per node pair, reducing BVH memory
usage by 43% (tab. 1, columns 2–3). As noted in section 4,
there is no cost overhead for constructing this representation.

By considering sibling nodes in pairs, both representa-
tions yield the same traversal order. However, bandwidth re-
quirements differ. Loading a bounding box pair from main
memory uses either 56 or 32 bytes. The information is read
via the GPU’s texturing units, providing a minimal amount
of caching [NVI09a]. As a texture read can transfer up to 16
bytes, the baseline needs 4 reads per node pair, our represen-
tation only 2. The average bandwidth consumed per pixel for
loading BVH nodes is shown in columns 4–5.

When pushing onto or popping off the stack, the basline
needs to transfer only a 4-byte node index. Our BVH rep-
resentation requires 3× 4 = 12 bytes to be stored, consum-
ing more bandwidth per stack access. However, 12 bytes can
still be read or written as a single transaction, incurring main
memory latency only once. We find that the baseline attains
a small speed-up if the entrypoint is stored on the stack, al-
lowing nodes with a > bmax to be skipped (see section 3.1).
The bandwidth figures for stack access in columns 6–7 re-
flect this use of 8-byte stack entries in the baseline.

Columns 8–9 summarize the difference in bandwidth re-
quirements during BVH traversal. In the final three columns,
the resulting frame rates are given. We see a bandwidth re-
duction of 37% on average, coinciding with a slight increase
in frame rate. As BVH traversal is only one component of
the rendering algorithm, its potential influence on the overall
frame rate is limited. Furthermore, speed-ups may be ham-
pered by one of three effects: The ray tracer is not bandwidth



6 Bartosz Fabianowski and John Dingliana / Compact BVH Storage for Ray Tracing and Photon Mapping

Figure 3: The six benchmark scenes used, shown here with photon mapping: Wall, Ring, Scene-6, Sponza, Sibenik, Conference.

Scene Triangles
BVH memory BVH traversal bandwidth per pixel FPS

Base Compact BV HB BV HC StackB StackC ∆ Base Compact ∆

Wall 30 504 288 489.0 279.4 29.1 55.5 -183.2 -35% 103.00 106.47 3.4%
Ring 138 2576 1472 682.4 389.9 25.7 47.2 -270.9 -38% 107.65 107.74 0.1%
Scene 6 804 16296 9312 1101.6 629.5 59.7 114.5 -417.3 -36% 83.65 85.54 2.3%
Sponza 76107 1314376 751072 2927.9 1673.1 154.6 299.6 -1109.7 -36% 42.45 42.64 0.4%
Sibenik 76643 1592360 909920 3779.9 2159.9 175.2 320.2 -1474.9 -37% 34.05 34.80 2.2%
Conference 282755 4181856 2389632 2343.7 1339.2 103.5 195.9 -912.0 -37% 50.19 51.00 1.6%
Column 1 2 3 4 5 6 7 8 9 10 11 12

Table 1: Ray tracing results, memory and bandwidths in bytes: BVH footprints; bandwidth requirements per pixel to read nodes
(BV H) and access the stack (Stack) for the baseline (B) and compact (C) BVH representations; frame rates for both.

bound; texture caching successfully eliminates main mem-
ory reads; stack accesses incur more latency than expected.

If the ray tracer is computation-bound, a more compact
BVH representation requiring additional operations to tra-
verse must necessarily make it slower. The advantage is in
reduced storage, allowing larger models to be handled. Tex-
ture caching may be successful because of our benchmark
scenes’ relatively low complexity. With larger models, cache
misses become more likely. These will cause a higher num-
ber of slow main memory reads with the baseline than with
our compact BVH representation. Finally, transferring three
32-bit values to and from the stack should occur in a single
transaction. It is unclear whether the CUDA compiler actu-
ally issues one or three transactions in this case. If more than
one transaction is used, our traversal algorithm incurs the
unnecessary penalty of additional latencies.

5.2. Photon mapping

BVH photon maps were the initial motivation for our work.
The photon mapping testbed is therefore older, based on an
earlier incarnation of our CUDA ray tracer that uses a kd-
tree for scene traversal and no persistent threads. Images are
rendered at 5122 resolution with one eye ray, one specular
reflection ray and a shadow ray for each per pixel. At the
eye and reflection ray hit points, photon hits are retrieved
from a photon map. To highlight traversal performance, pho-
ton maps are constructed offline using a linear BVH build
method [LGS∗09]. As previously demonstrated [FD09], the
build can also be done per-frame at interactive rates.

The baseline representation is a classical BVH, storing six

bounding planes and a child index for each node. By padding
the node size from 28 to 32 bytes, it can more efficiently be
loaded using two texture reads. The compact BVH requires
32 bytes per pair of sibling nodes. Photon hit counts and
BVH sizes are given in columns 1–3 of table 2. Our repre-
sentation reduces the BVH memory footprint by nearly 50%.

During each photon map traversal, an average of 344
nodes are visited (column 4). By storing sibling nodes to-
gether, our BVH representation significantly reduces the
number of stack accesses required for this traversal (columns
5–6). In a classical BVH, an inner node found to contain the
query point ~p causes one of its children to be visited imme-
diately, the other pushed onto the stack. With our represen-
tation, the children’s bounds are tested immediately. Only if
both actually contain ~p is a child pushed onto the stack. Oth-
erwise, traversal proceeds directly with the child that con-
tains ~p or, if neither does, by popping from the stack.

For both BVH representations, only a 4-byte node index
needs to be put on the stack. The more compact node storage
and lower number of stack accesses translate into bandwidth
savings of 53% on average for BVH traversal with our repre-
sentation (columns 7–10). Columns 11–13 demonstrate that
besides reducing storage and bandwidth requirements, ren-
dering speeds are also improved.

Photon map traversal is again only one part of a more
complex rendering algorithm. To better illustrate its speed-
up, we additionally compare frame rates with photon re-
trieval disabled. Rays are traced and the photon map is tra-
versed as before. However, the computation of each photon’s
actual illumination contribution is omitted. By removing this



Bartosz Fabianowski and John Dingliana / Compact BVH Storage for Ray Tracing and Photon Mapping 7

Scene
Photon BVH memory Operations / trav BVH BW / trav FPS

hits B C V SB SC B C ∆ B C ∆1 ∆2
Wall 20256 249k 125k 201.9 100.9 31.7 7268 3484 -3784 -52% 7.04 7.46 6.0% 52%
Ring 74101 772k 386k 492.7 246.3 70.8 17737 8450 -9287 -52% 4.91 5.42 10.4% 88%
Scene 6 160298 703k 351k 303.6 151.8 47.0 10930 5234 -5697 -52% 3.52 3.71 5.4% 88%
Sponza 292511 5479k 2740k 457.8 228.9 62.4 16482 7824 -8657 -53% 5.02 6.38 27.1% 113%
Sibenik 413316 7789k 3894k 160.5 80.2 31.7 5776 2821 -2956 -51% 9.12 11.32 24.1% 87%
Conference 97911 1153k 577k 445.6 222.8 63.8 16042 7640 -8402 -52% 4.83 5.50 13.9% 65%
Column 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Table 2: Photon mapping results, memory and bandwidths in bytes: Number of photon hits; BVH footprints for baseline (B)
and compact (C) representations; nodes visited (V ) and pushed onto the stack (S); total bandwidth requirements per photon
map traversal; frame rates; frame rate difference with photon retrieval disabled.

operation’s masking effect, the speed-up in the traversal be-
comes more apparent, as evidenced by the final column.

6. Conclusions and future work

We have described a new compact representation for binary
hierarchies of AABBs, a form of BVHs frequently used in
ray tracing [WMH∗07] and recently also introduced for pho-
ton mapping [FD09]. By eliminating only redundant infor-
mation, full bounding tightness is maintained while reducing
the BVH’s memory footprint by 43%–50%. BVH construc-
tion time is not adversely affected.

We have presented efficient traversal algorithms for ray
tracing and photon mapping. Their implementations on a
current NVidia GPU show reduced bandwidth requirements
over existing BVH representations. The resulting speed-ups
are slight for ray tracing and significant for photon mapping.
With processing power continuing to increase faster than
memory speeds, the lower bandwidth requirements can be
expected to have an even more significant impact in the fu-
ture, translating into larger speed-ups. We plan to reevaluate
our traversal algorithms on NVidia’s next generation Fermi
architecture [NVI09c] when it is released.

Our compact representation reduces the memory occupied
by BVH nodes. The data that is indexed by the BVH re-
mains unaffected and retains its full storage and bandwidth
requirements. We would like to combine the compact BVH
with a more compact representation of actual data, such as
ray strips [LYM07], to efficiently visualize larger models.

Early split clipping [EG07] improves the quality of the
spatial index. However, it also introduces an additional level
of indirection between the BVH nodes and the scene ele-
ments. These added references are not compacted in our cur-
rent representation. In the future, we would also like to in-
vestigate their more efficient storage.

Finally, our compact representation can be applied outside
of computer graphics. Collision detection is the most promi-
nent field also using binary hierarchies of AABBs [Ter01]. It

will be interesting to evaluate the impact of our BVH repre-
sentation on a high-performance collision detection system.

7. Acknowledgments

The models used are courtesy of Peter Shirley (Scene 6),
Marko Dabrovic (Sponza, Sibenik), Anat Grynberg and
Greg Ward (Conference Room). We thank the reviewers for
their comments and suggestions.

References
[AL09] AILA T., LAINE S.: Understanding the efficiency of ray

traversal on GPUs. In HPG (2009), pp. 145–149. 3, 5

[BAGJ08] BUDGE B., ANDERSON J., GARTH C., JOY K.:
A straightforward CUDA implementation for interactive ray-
tracing. In RT (2008), p. 178. 1, 5

[Ben75] BENTLEY J.: Multidimensional binary search trees used
for associative searching. Communications of the ACM 18, 9
(1975), 509–517. 1

[CSE06] CLINE D., STEELE K., EGBERT P.: Lightweight
bounding volumes for ray tracing. Journal of Graphics Tools
11, 4 (2006), 61–71. 2

[EG07] ERNST M., GREINER G.: Early split clipping for bound-
ing volume hierarchies. In RT (2007), pp. 73–78. 5, 7

[EWM08] EISEMANN M., WOIZISCHKE C., MAGNOR M.: Ray
tracing with the single slab hierarchy. In VMV (2008), pp. 373–
381. 2

[FD09] FABIANOWSKI B., DINGLIANA J.: Interactive global
photon mapping. In EGSR (2009), pp. 1151–1159. 1, 2, 3, 6,
7

[FM86] FABBRINI F., MONTANI C.: Autumnal quadtrees. The
Computer Journal 29, 5 (1986), 472–474. 2

[GPSS97] GÜNTHER J., POPOV S., SEIDEL H.-P., SLUSALLEK
P.: Realtime ray tracing on GPU with BVH-based packet traver-
sal. In RT (2997), pp. 113–118. 1

[HHK∗07] HERZOG R., HAVRAN V., KINUWAKI S.,
MYSZKOWSKI K., SEIDEL H.-P.: Global illumination us-
ing photon ray splatting. In Eurographics (2007), pp. 503–513.
2

[HHS06] HAVRAN V., HERZOG R., SEIDEL H.-P.: On the fast
construction of spatial hierarchies for ray tracing. In RT (2006),
pp. 71–80. 2



8 Bartosz Fabianowski and John Dingliana / Compact BVH Storage for Ray Tracing and Photon Mapping

[HMHB06] HUBO E., MERTENS T., HABER T., BEKAERT P.:
The quantized kd-tree: Efficient ray tracing of compressed point
clouds. In RT (2006), pp. 105–113. 2

[Jen96] JENSEN H.: The Photon Map in Global Illumination.
PhD thesis, Technical University of Denmark, Lyngby, Denmark,
1996. 1, 2

[KK86] KAY T., KAJIYA J.: Ray tracing complex scenes. In
SIGGRAPH (1986), pp. 269–278. 2

[KMKY09] KIM T.-J., MOON B., KIM D., YOON S.-E.:
RACBVHs: Random-accessible compressed bounding volume
hierarchies. IEEE Transactions on Visualization and Computer
Graphics 15, 6 (2009). 2

[LGS∗09] LAUTERBACH C., GARLAND M., SENGUPTA S.,
LUEBKE D., MANOCHA D.: Fast BVH construction on GPUs.
In Eurographics (2009), pp. 375–384. 2, 6

[LYM07] LAUTERBACH C., YOON S.-E., MANOCHA D.: Ray-
strips: A compact mesh representation for interactive ray tracing.
In RT (2007), pp. 19–26. 2, 7

[LYT06] LAUTERBACH C., YOON S.-E., TUFT D.: RT-
DEFORM: Interactive ray tracing of dynamic scenes using
BVHs. In RT (2006), pp. 39–46. 1

[LYTM08] LAUTERBACH C., YOON S.-E., TANG M.,
MANOCHA D.: ReduceM: Interactive and memory efficient ray
tracing of large models. In EGSR (2008), pp. 1313–1321. 2

[Mah05] MAHOVSKY J.: Ray Tracing with Reduced-Precision
Bounding Volume Hierarchies. PhD thesis, University of Calgary,
Calgary, Alberta, Canada, 2005. 2, 3

[MB90] MACDONALD J., BOOTH K.: Heuristics for ray tracing
using space subdivision. The Visual Computer 6, 3 (1990), 153–
166. 1, 5

[NVI09a] NVIDIA CORPORATION: NVIDIA CUDA C pro-
gramming best practices guide CUDA toolkit 2.3. 2009. 2, 5

[NVI09b] NVIDIA CORPORATION: NVIDIA CUDA program-
ming guide version 2.3. 2009. 1, 2, 5

[NVI09c] NVIDIA CORPORATION: NVIDIA’s next generation
CUDA compute architecture: Fermi. 2009. 7

[RW80] RUBIN S., WHITTED T.: A 3-dimensional representa-
tion for fast rendering of complex scenes. In SIGGRAPH (1980),
pp. 110–116. 1

[SFES07] SCHJØTH L., FRISVAD J., ERLEBEN K., SPORRING
J.: Photon differentials. In GRAPHITE (2007), pp. 179–186. 2

[Smi98] SMITS B.: Efficiency issues for ray tracing. Journal of
Graphics Tools 3, 2 (1998), 1–14. 2

[ST94] STÜRZLINGER W., TOBLER R.: Two optimization meth-
ods for raytracing. In SCCG (1994), pp. 104–107. 2

[Ter01] TERDIMAN P.: Memory-optimized bounding-volume hi-
erarchies. 2001. 2, 7

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray tracing de-
formable scenes using dynamic bounding volume hierarchies.
ACM Transactions on Graphics 26, 1 (2007), 6:1–6:18. 1

[WGS04] WALD I., GÜNTHER J., SLUSALLEK P.: Balancing
considered harmful – faster photon mapping using the voxel vol-
ume heuristic –. In Eurographics (2004), pp. 595–603. 2

[Whi80] WHITTED T.: An improved illumination model for
shaded display. Communications of the ACM 23, 6 (1980), 343–
349. 1

[WK06] WÄCHTER C., KELLER A.: Instant ray tracing: The
bounding interval hierarchy. In EGSR (2006), pp. 139–149. 2

[WMH∗07] WALD I., MARK W., HUNT W., GÜNTHER J.,
PARKER S., BOULOS S., SHIRLEY P., IZE T.: State of the art
in ray tracing animated scenes. In Eurographics State of the Art
Reports (2007), pp. 89–116. 1, 7

[WMS06] WOOP S., MARMITT G., SLUSALLEK P.: B-kd trees
for hardware accelerated ray tracing of dynamic scenes. In GH
(2006), pp. 67–77. 2

[Woo90] WOO A.: Graphics Gems. Academic Press, 1990,
ch. Fast Ray-Box Intersection, pp. 395–396. 2

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C., WAGNER
M.: Interactive rendering with coherent ray tracing. In Euro-
graphics (2001), pp. 153–164. 1


