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1. Introduction

Ever since the discovery of X-rays by physicist Wilhelm Conrad Röntgen in 1895, medical
imaging has played an important role in modern diagnostics. Advancements in imaging
technology led to more precise diagnoses and new possibilities of assessing the conditions
inside a human body without the need for invasive procedures. A great step forward
has been made with the inception of devices that provide a three-dimensional view of a
patient’s insides. The processes used to acquire such volumetric data are jointly referred
to as tomography.

1.1. Tomography

The patient is placed on a table that is then slid into a tomograph. The tomograph
generates a two-dimensional image of the patient’s cross-section currently in the device,
known as a slice. A complete dataset consists of a series of slices, each obtained after the
table has been advanced slightly. Volumetric information is reconstructed by stacking the
slices (figure 1.11). Each intensity value recorded is that of a voxel, or volume element,
extending half-way to the location of the next intensity value in all directions. The
resolution of a tomographic scan is therefore determined by both the spacing of points
inside a slice and the distance the table has been advanced between the acquisition of
consecutive slices.

Several types of tomographs have been developed for the noninvasive or nearly-non-
invasive three-dimensional internal imaging of a patient’s body [Zai97] [NGL+98] [CB94]
[BBR89]. Common to all is that the data produced falls into one of two basic categories –
it is either physiological or anatomical.

1All datasets obtained from the OsiriX website at http://homepage.mac.com/rossetantoine/osirix/

Figure 1.1: Tomographic slices stacked for the reconstruction of volumetric data

1



1. Introduction

(a) (b)

Figure 1.2: Transaxial cut through a patient’s chest in multiple modalities: (a) physio-
logical PET scan showing metabolic activity; (b) anatomical CT scan show-
ing bone and tissue structure

1.1.1. Physiological Imaging

Physiological data provides functional information about the metabolic processes in a
living organism (figure 1.2a). It is usually acquired by methods of nuclear medicine.
The patient is injected with a tracer consisting of a radioactive isotope attached to a
biologically active molecule. The tracer is given time to travel through the patient’s
body and concentrate in regions of high metabolic activity. Rotating gamma cameras
are then used to measure tracer concentration by detecting the radiation it emits. The
types of scanners used are:

PET The tracer used in Positron Emission Tomography emits a positron which in turn
releases two gamma rays in exactly opposing directions. By measuring the dif-
ference in time between the two rays reaching the scanner’s cameras, the exact
location of the tracer molecule along the line between the cameras can be cal-
culated. The radionuclides used in PET scanners have very short half-life times
necessitating the use of expensive on-site cyclotrons for their production.

SPECT Single Photon Emission Computed Tomography employs a tracer that directly
emits gamma rays. The radionuclides have longer half-life times and the scanner is
less expensive. The drawback is that the calculation of a tracer molecule’s position
from a single ray is less precise and leads to lower quality results.

fMRI Functional Magnetic Resonance Imaging is the most recently developed method
for obtaining functional diagnostic information. MRI measures the concentration
of hydrogen throughout a patient’s body by applying a strong magnetic field and
detecting the reaction of hydrogen nuclei to excitation by a second pulsed field.
MRI images taken in rapid succession can be used to visualize blood flow and
changes in oxygenation levels, which coincide with neuronal activity. More gen-
eral functional information may be obtained through chemical shift imaging. By

2



1.1. Tomography

recording the spectrum of the responses to the pulsed field, it allows different nuclei
to be distinguished and their concentrations to be measured.

The most important advantages of fMRI are that it produces images of very high
resolution and is completely noninvasive. PET and SPECT generate lower quality images
and require the injection of a radioactive tracer into the patient’s body. However, these
techniques are also more flexible. By choosing different types of tracer molecules, a
variety of metabolic processes can be visualized. While chemical shift imaging can
produce similar data, it suffers from very long acquisition times so that the regions
scanned must be limited to small areas or single two-dimensional slices.

1.1.2. Anatomical Imaging

Anatomical data provides structural information about a patient’s body, showing the
shapes of bones and internal organs (figure 1.2b). The types of scanners used to acquire
such information are:

CT In Computed Tomography, an X-ray beam is directed at the patient and its intensity
measured after it has passed through the patient’s body. As in traditional X-ray
imaging, a stronger attenuation indicates more solid tissue. Readings obtained at
different angles by rotating the X-ray source around the patient are combined to
compute an image of the patient’s anatomy.

MRI Magnetic Resonance Imaging uses the same technique as fMRI described in the
previous section to measure the concentration of hydrogen in the patient’s body.
As such, it produces images accurately depicting soft tissue and individual organs.

CT and MRI generally produce images of much higher resolution and sharpness than
PET and SPECT. Typical examples are shown in figure 1.2 with the PET slice having a
resolution of 128×128 pixels and the CT, 512×512. This translates into a voxel spacing
within the slice plane of several millimeters for PET/SPECT and one millimeter or less
for CT/MRI. The spacing between slices is determined by the distance the patient table
is advanced each time. Although it can be set almost arbitrarily, a natural lower limit is
given by the coarseness of the imaging device and an upper, by the dose of radiation the
patient is exposed to. Spacings of several millimeters are the norm for all tomographs.

1.1.3. Modality Fusion

An important observation to be made about figure 1.2 is that the physiological and
anatomical images provide complementary information which would benefit from being
combined into a single dataset. Numerous pathological conditions ranging from tumors
to defects in the nervous system may be diagnosed by identifying abnormal metabolic
activity. In order to distinguish normal from abnormal, each center of activity needs to
be associated with its position in the patient’s anatomy. A physiological tomographic
scan indicates metabolic activity but fails to provide the necessary frame of reference. An
anatomical scan truthfully represents the patient’s anatomy but contains no information
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Figure 1.3: Fusion of the slices from figure 1.2; physiological activity shown in blue,
anatomical reference in red

about metabolism. Only when fused into one image would the two scans allow for a fast
and precise localization of pathological conditions (figure 1.3).

The slices from two scans cannot be simply overlaid because they differ in more than
just their modality. They have been taken at different resolutions, may be spaced dif-
ferently, often show overlapping but not identical regions of the body and capture the
patient in similar but never completely equal poses. Instead, the two datasets must
be treated as volumetric images that are to be properly aligned in all three dimensions
before they may be fused.

1.2. Registration

The process of geometrically aligning a pair of images with each other is known as reg-
istration. It is an important technique used throughout image computation whenever
the difference between two images is to be assessed or their information contents com-
bined. Surveys of registration methods such as [Bro92] and [ZF03] identify four types of
registration problem:

Multi-View The images show either the same scene from different points of view or
different regions of a larger scene.

Multi-Temporal The images show the same scene but have been taken at different points
in time.

Multi-Modal The images have been acquired using different types of sensors and contain
complementary information.

Scene-to-Model One of the images shows an actual view of the scene while the other
is a model of what should be visible.
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1.2.1. Application Areas

Each problem type is encountered in a wide range of applications. Some of the most
prominent examples from three major areas are:

1.2.1.1. Remote Sensing

Satellite and aerial photography provide images of the earth’s surface taken from high
above. They may be evaluated to conveniently monitor a number of factors, ranging
from land use to pollution levels, cattle migration or weather conditions. Multi-temporal
registration is used to align images taken at different times, often in regular intervals,
allowing for the assessment of changes such as increases in pollution levels or the move-
ment of clouds. Multi-modal registration is used to fuse the readings from different types
of sensors, such as visible light and infra-red cameras, and provide a more complete rep-
resentation of atmospheric conditions. Scene-to-model registration is employed to align
camera images with maps of the region, providing geographic information and allowing
for the precise localization of areas of interest. Multi-view registration is performed to
stitch a larger view from several images of smaller regions.

1.2.1.2. Computer Vision

Multi-view registration is used in stereoscopic vision, employed for example by au-
tonomous robots or face recognition systems. The images from two cameras located
a small distance apart are fused to obtain depth information, analogous to the mech-
anisms at work in human and animal vision. Multi-temporal registration can be used
in camera based security and intrusion detection systems. Changes in the image indi-
cate motion and, if not explained by a known process in the scene, the presence of an
intruder. Scene-to-model registration is employed in object recognition, most notably
for biometric access control. An image of a person’s face or fingerprint is aligned with
template images stored in a database and the degree of correspondence with each tem-
plate is evaluated. A correspondence above a certain threshold constitutes a match and
access is granted.

1.2.1.3. Medical Image Computation

All four types of registration problem are encountered within this application area.
Multi-view registration is used when multiple X-ray images taken from different di-
rections are aligned to get a three-dimensional impression. Another scenario is in the
matching of a two-dimensional X-ray image to a three-dimensional body scan. Multi-
temporal registration serves to assess various changes in the human body over time. It
can be used to monitor tumor growth or the progression of metabolic processes and to
evaluate the results of an operation by aligning pre- and postoperative images. Scene-
to-model registration is employed when matching a view of the patient’s body to one
obtained from an anatomic atlas. A frequent application of this technique is in neu-
rology, where a three-dimensional scan of the patient’s brain is aligned with a brain
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model to identify the location of brain centers. This allows for a better assessment of
damages to the brain or the planning of operations. Multi-modal registration is used to
align datasets from different tomographic scanners. This is the problem that needs to
be solved when fusing an anatomical with a physiological view of the patient’s body. It
is described in more detail in section 1.3.

1.2.2. General Problem Statement

In all registration scenarios, the two images given are referred to as the reference and
registered image. Each is expressed as an array of intensity values over an associated
coordinate frame. The coordinate system has its origin at a corner of the image and axes
aligned with its sides. The intensity of the reference image at a point xu in reference
coordinates is u (xu). Similarly, the intensity of the registered image at a point xv in
registered coordinates is v (xv). For registration, a transformation T from reference to
registered coordinate frame is used:

xv = T (xu) (1.1)

This transformation maps a point xv in the registered image to each point xu in the
reference image. It must be an injective function so that the registered image is distorted
but not folded over itself. The reference image is unaffected by the transformation and
always retains its original shape. A formal definition of the registration problem is given
as:

Definition (Registration Problem). Determine an injective transformation T that will
assign the corresponding point xv in the registered image to each point xu in the reference
image.

After the correct mapping has been determined, the information contents of the two
images may be fused. For each point xu in reference coordinates, u (xu) is the intensity
of the reference image and v (T (xu)) that of the registered image.

1.2.3. Problem Specification

While the registration problem is easily stated, it is in most cases very difficult to solve.
Due to the diversity of imaging techniques and the various scenarios in which registra-
tion is encountered, it is not possible to provide a single algorithm that will determine
the optimal alignment for any pair of images. Instead, a wide range of techniques have
been developed, focusing on particular application areas or attempting to be as general
as possible. To date, more than two thousand papers have been written on image regis-
tration, often suggesting small changes and tweaks to previously published algorithms.
This has lead to a complex and hard to navigate collection of approaches.

Which of the many techniques may be used depends on the exact nature of the problem
that is to be solved. The most important criteria by which a registration problem is
specified are:
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Type of Registration Problem As described in section 1.2, there are four basic types of
registration problem. The type of problem has great influence on the registration
process. For example, multi-temporal registration must be robust to changes is
lighting conditions while multi-modal and model-to-scene registration cannot even
rely on the same object having a similar intensity in both images.

Dimensionality of the Input Data Dimensionality influences the type of transformation
as well as the overall complexity of the problem. Three combinations of image
dimensionalities are commonly encountered:

2D In the simplest and best studied case, two planar images are aligned with each
other. T : R2 → R2

2D – 3D This is a special case where a planar image is positioned within a volu-
metric image. T : R3 → R2

3D In the last case, two volumetric images are aligned. T : R3 → R3

The registration of volumetric images is far more challenging than that of their
planar counterparts. There is an order of magnitude more data to be processed
and misalignment may be present in all three dimensions.

Source, Kind and Magnitude of Misalignment Many types of misalignments can be
undone by registration. They range from the most simple one-dimensional shift
to complex deformations that vary throughout the image. For a misalignment to
be rectified, a transformation T needs to be chosen that can express the required
mapping in its entire complexity.

Expected Results It is not always desirable or necessary to perfectly align the two im-
ages. In scene-to-model registration applied to face recognition, the features of
the model should not be warped to coincide precisely with those of the face in the
camera image. The faces should only be overlaid to highlight any differences which
are then used to determine whether there is a match or not.

Computation Time Another reason to accept less than perfect registration is the num-
ber of computations required. The calculation of a transformation T that reverses
the effects of a complex misalignment can be very time-consuming. It can be ac-
celerated by determining a rough estimate instead of the exact solution. This is
frequently achieved by choosing a simpler kind of transformation which accounts
only for the most important sources of misregistration, leaving minor distortions
uncorrected. In some settings, such as the matching of visual terrain data with
maps for missile guidance control, real-time performance is required. Computa-
tional efficiency varies greatly between registration techniques.

Permissibility of Manual Intervention Computer-implemented registration is meant to
replace the tedious and error-prone manual alignment of images. Still, the diffi-
culty of determining what constitutes a correct registration makes human input
necessary in some cases. Semi-automatic registration techniques can achieve highly
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qualitative results in a short time when directed by a skilled operator. Fully auto-
matic methods have to solve a harder problem which may take more time or lead
to less precise results, but ultimately they are the goal, allowing a computer to
perform registration without help from a human.

Contextual Information Additional information available about the particular applica-
tion domain may be beneficial to the registration process. For example, when
aligning two satellite images it is possible to match the positions of roads and
buildings instead of working with raw intensities. Multi-modal registration can
benefit from prior knowledge about the correspondence of intensities in the two
images. Techniques meant to be used across a wide range of problems must be
carefully constructed not to make any assumptions about the data which may only
hold in some scenarios.

1.2.4. Classification of Techniques

Despite the large number of registration methods developed and their sometimes high
degree of specialization, most approaches follow the simple iterative scheme shown in
algorithm 1.1.

Algorithm 1.1 Registration process
T ← initial guess
repeat

calculate similarity metric
adjust T according to search strategy

until similarity above threshold

A particular registration technique is characterized by the choices made for the three
major components of this algorithm:

Transformation Type The transformation type determines the family of functions from
which T can be selected. It affects the registration process in several ways. First,
it decides what kind of misalignment can be reversed as adjustments which the
transformation type is unable to express cannot be performed. Second, it also
directly affects computation time because a more complex type has more degrees
of freedom, or parameters, for which adjustments need to be calculated during
each loop iteration. When choosing a transformation type, the opposing goals of
undoing complex misalignments and achieving fast registration must be weighted
and a compromise found.

As each setting of the parameters directly corresponds to a particular transforma-
tion function, both the set of parameters and the function they select are referred
to by the same letter T in this thesis.

The choice of an initial transformation has great influence on the registration
process, determining how quickly the transformation converges and whether it
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converges at all. Unfortunately, when no information about the misalignment of
the two images is available, automatic generation of a good first guess may be
impossible. Since only a raw estimate of the correct alignment is required and
humans can quickly assess the general relation of two images, this initial step can
be efficiently performed by a human operator. Another possibility is to begin with
an identity transform, that is to initially overlay the images as if no misalignment
was present.

Similarity Metric The similarity metric is used to assess the quality of alignment that
is achieved by T and to calculate the information required to improve it. If the
existing misalignment can be precisely determined, a transformation that corrects
it may be computed directly and there is no need for an iterative process. In
most cases, only an estimate of the alignment quality is available. A reliable
estimate is important for the registration process as it is the only means by which
the progress of the registration can be evaluated and a direction chosen for the
next loop iteration. The metric needs to provide sufficient information for the
adjustment of each parameter offered by the transformation type. This limits
the possible choices of similarity metric depending on the type of transformation
selected and the kind of information required by the search strategy.

Search Strategy A search strategy uses the information made available by the similarity
metric to modify T in an attempt to improve the alignment. A more complex
strategy may be able to achieve registration in fewer loop iterations or to better
cope with inconsistencies in the data provided by the similarity metric.

1.3. Multi-Modal Medical Registration

This section addresses the specific registration problem that arises when aligning physi-
ological with anatomical tomographic scans. The problem is first expressed in terms of
the criteria identified in section 1.2.3. A registration technique is then presented which
has been developed to efficiently solve this particular kind of problem.

1.3.1. Problem Specification

The problem type and dimensionality of the data are clearly those of multi-modal 3D
registration. For every xu ∈ R3, u (xu) is the intensity of the reference scan at xu and
v (T (xu)) that of the registered scan at the associated position T (xu). How the intensity
is estimated if a position falls between voxel centers or outside the image differs between
registration techniques. Another choice that needs to be made individually for each
technique is which of the two scans is to be treated as the reference and which as the
registered image. Depending on the properties of the techniques, this may or may not
have an influence on the result.

The kind and magnitude of misalignment to be corrected are not well defined. Clinical
staff may have taken care to position the patient in very similar poses for the two scans
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or there may be significant deviations. Inevitable metabolic processes could have led to
changes in the exact shape and position of internal organs. If a large amount of time
has passed between the scans being taken, the patient’s condition may have progressed
and their anatomy changed more radically.

The expected results are again easier to state as the primary goal is as precise a
registration as possible. Anatomical references are only useful in the assessment of a
physiological scan when there is a high degree of confidence in their correctness.

Short computation time also is of high priority. In a clinical setting, long waiting
times while the data is being prepared are not acceptable. Considering that volumetric
datasets are to be aligned and the transformation should be able to undo some degree of
changes in the shapes of internal organs, a very efficient registration method is required.
A transformation type should be chosen that is able to express the necessary mapping
while offering the least possible number of parameters to be adjusted. The similarity
metric must perform its calculations quickly despite the large amount of data in the
two images. If the metric is made faster at the expense of precision, the search strategy
must be able to cope with this imprecision and still complete the registration in a small
number of iterations.

A need for manual intervention is not desired but can be tolerated at a moderate level.
If only small regions within the two scans are relevant to the diagnosis, the registration
process may be accelerated by a human operator specifying the regions of interest. A
human could also be asked to provide a rough initial alignment of the two datasets.

The amount of contextual information available depends on the desired degree of
specialization of the registration technique. As shown in sections 1.1.1 and 1.1.2, there
are several methods for the acquisition of tomographic data and the images they produce
vary in their appearance. If only a specific combination such as PET to CT registration
is to be considered, the particular characteristics of those two modalities may be used.
For a more general approach, it should only be assumed that one of the images will
provide physiological and the other anatomical data.

1.3.2. Proposed Technique

Using the metadata provided by tomographic scanners, it is possible to automatically
match the scales of the two datasets. However, rescaling one of the two images to
match the size of the other may lead to a loss of information. A different approach
is therefore proposed. xu and xv are both expressed in millimeters throughout the
registration process and only when accessing image intensities via the functions u and v,
they are implicitly converted to voxel coordinates. In addition to a scaling, this involves
a translation because the origin in an array of intensities refers to the center of the first
voxel, not its corner.

To transparently handle a wide range of modalities, intensities are normalized to an
integer scale of [0, 255] for each image. Voxels that correspond to positions outside the
patient’s body attain intensities of zero. This value is therefore also substituted when
xu or T (xu) point to locations outside the volumetric datasets. For positions that fall
between voxel centers, trilinear interpolation is used. It estimates the intensity from
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those of up to eight surrounding voxels, weighted by the distances of their centers to the
desired position.

The registration technique is based on the general iterative scheme of algorithm 1.1.
It can therefore be characterized by the choices made for the algorithm’s three main
components. Brief overviews are provided here and each component is addressed in
more detail in its own dedicated chapter later in this thesis:

Transformation Type To narrow down the range of potential misalignments, the as-
sumption is made that the two scans have been taken in close succession and it
has been attempted to reach similar poses. This avoids the need to cope with large
anatomical differences but cannot eliminate the possibility of small changes in the
shapes of internal organs due to metabolic processes.

The images are initially positioned so that their centers coincide. A transformation
is then applied which treats the registered image as completely rigid. The image
can be translated and rotated freely in three-dimensional space by adjusting six
parameters. This allows the general body shapes to be aligned.

Once the parameter values have been found that maximize the similarity metric,
a non-rigid transformation type is used. A pattern of control nodes is constructed.
Each node, when moved, leads to a deformation of the registered image that is
strongest at the node’s position and decreases with distance. By adjusting the node
positions, complex deformations can be applied to the registered image, undoing
local changes in the patient’s anatomy. The effects of each node can be considered
approximatively local and independent of the other nodes. To assess the alignment
achieved, the similarity metric therefore only needs to be evaluated in small regions
around each node.

Similarity Metric The goal is the construction of a registration method that is able to
align all types of anatomical and physiological tomographic scans. No assumption
about a specific relationship between the intensities in the two images is made.
The similarity metric chosen is the information-theoretic measure of mutual infor-
mation. It is able to assess the quality of alignment between the images without
needing any further contextual information.

The mutual information is calculated using not the entire images but a randomly
selected small subset of points. This results in a metric that can be very efficiently
evaluated even for large volumetric datasets but due to its stochastic nature pro-
vides only noisy estimates of alignment quality. In addition to the mutual infor-
mation itself, derivatives with respect to the parameters T of the transformation
type can be obtained. They are determined using the same stochastic approach
and are also noisy.

Search Strategy The search strategy is stochastic gradient ascent. Each transformation
parameter is adjusted by adding a number proportional to the derivative of the
similarity metric with respect to its value. This simple technique is not normally
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suitable for a randomized metric as it gets stuck in local extrema. However, be-
cause the derivatives are also noisy, they do not point directly toward the nearest
extremum and the search is able to overcome maxima introduced by noise if their
magnitude is sufficiently small. To improve efficiency, a multiresolution approach
is used whereby reduced versions of the images are aligned first and their sizes
increased as registration progresses.

1.4. Overview of the Thesis

The problem of multi-modal medical registration and a technique for its solution were
introduced in this chapter. Next, the three main components of the technique are ad-
dressed in more detail. For each component, the method chosen in this thesis is developed
and compared to other established approaches. The similarity metric is considered in
chapter 2, the search strategy in 3 and the two transformation types in 4.

Chapter 5 describes the implementation of an actual registration system that employs
the proposed technique to align tomographic datasets. In chapter 6, GPU based imple-
mentations of the most time-consuming computation steps are presented. An overview
of the paradigms employed by a graphics card is given, their use for general purpose
programming explained and the implementation of the registration process described.

Chapter 7 provides experimental results indicating the registration quality and speed
achieved by the CPU and GPU based implementations. Chapter 8 is a discussion of the
registration system, analyzing the degree to which the desired goals have been met and
suggesting directions of future work.

1.5. Notations

The notations used in this thesis for vectors, matrices and their components are sum-
marized in table 1.1.

Example Expressions Description
x, qi Column vector
(x)k, (qi)k kth component of vector
xk Short hand notation for the above used only when the

vector’s name contains no subscripts
(x)x, (x)y, (x)z, (x)w Alternative notations for the up to four components of a

coordinate vector
A, MT Matrix
(A)ij , (MT )ij Matrix element in ith row and jth column
Aij Short hand notation for the above used only when the

matrix name contains no subscripts
grad f (x) Gradient of f , defined as a row vector

Table 1.1: Notations
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The similarity metric serves two purposes. It estimates the quality of alignment achieved
by the current transformation T and, more importantly, generates the information re-
quired to further improve the alignment. The choice of similarity metric is crucial in
the design of a registration technique. If the metric provides unreliable results, it is
not possible to adjust the transformation and correct the misalignment between the two
images. Occasional inconsistencies may be compensated by the search strategy at the
expense of a slower registration process that requires more iterations. Systematic failure
of the similarity metric makes registration impossible as it leads to either a search that
never converges or one that arrives at an incorrect final alignment.

The primary factor affecting the difficulty of assessing the current alignment is the
nature of the data to be registered. [Bro92] divides the possible variations between the
two images into three categories, each of which has a different influence on the similarity
metric:

Corrected Distortions These are the differences between the two images that are to
be undone by registration. The similarity metric needs to determine the level of
corrected distortions still present in the registered image and the changes to the
transformation required to correct them.

Uncorrected Distortions Uncorrected distortions are those which are not desired but
will not be corrected by the registration process. Examples are differences in
lighting between the two images or geometric deformations too complex for the
chosen transformation type to address. The similarity metric must be robust to
this type of distortions and not take them into account when assessing the current
alignment.

Variations of Interest This category encompasses the differences that are to be high-
lighted and not removed by registration. In multi-modal registration, the variations
of interest are the intensity differences of corresponding voxels. The metric must
also be robust to this class of distortions so that they do not affect its evaluation
of the alignment.

An important aspect in 3D registration is computational efficiency. A similarity metric
whose calculation time scales linearly with the size of the image may work well for 2D
registration but will take a very long time to compute when used on volumetric data.
Metrics have been developed that address this concern. While efficient to compute, they
are also robust to a wide range of uncorrected distortions and variations of interest,
achieving fast and accurate assessment even with large volumes of data.
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2.1. Survey of Metrics

The next two sections explore the similarity metrics used by existing registration tech-
niques, focusing on their applicability to multi-modal medical 3D registration. As with
the techniques themselves, a great number of different metrics have been proposed many
of which differ only in small details. Such similar metrics are grouped and evaluated as
common families. For more comprehensive treatments that list more members of each
family, see [Bro92, ZF03].

2.1.1. Feature Based Approaches

Similarity metrics fall into two large classes. The first is that of feature based approaches.
They introduce a preprocessing step in which salient features are identified in both
images. When assessing the alignment of the two images later on, only the positions of
these features are considered. The feature extraction may be computationally expensive
as it has to be performed only once at the beginning of the registration process. This
allows for a very careful selection of features identifying those that precisely represent
corrected distortions while being insensitive to uncorrected distortions and variations of
interest.

In order to achieve the desired level of robustness and performance, a featureset needs
to be chosen that is suitable for the nature of the images being registered. Three families
of features are identified in [ZF03]:

Lines

Many algorithms exist for the fast and precise extraction of edges and contours, from
the simple intensity gradient based Canny edge detector [Can86] to sophisticated Snake
based approaches [KWT88]. Line features are invariant to many types of uncorrected
distortions. They are also invariant to the variations of interest in multi-modal image
registration as long as the contours of the objects in the scene are discernable in both
images. The disadvantage of using lines as features is that it is generally not possible to
determine which lines in the two images correspond to each other. The search strategy
may thus align incorrect pairs of lines leading to misregistration.

Regions

Closed-boundary regions in an image may be found by segmentation [PP93]. They are
frequently represented by points whose locations are determined by the properties of the
regions. A prominent example are centers of gravity. While region features may take
longer to identify, their smaller number makes the assessment of alignment between two
images more efficient. Depending on the nature of the data, additional properties such
as region shapes and sizes may be invariant to uncorrected distortions and variations of
interest. Such additional information makes it possible to directly identify feature pairs
and avoid misregistration.
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Points

Points selected as features are either specific locations on the edges of an image such as
line intersections or points of high curvature or positions where highly distinguishable
changes in intensity occur. The kind of point feature to be used can be adapted very
precisely to the nature of the data. If the point type is chosen so that only a few highly
distinct features are found, fast registration with the potential of directly identifying
feature pairs is again possible.

2.1.1.1. Shortcomings

All three families of features share a serious problem when applied to multi-modal med-
ical 3D registration. They depend on image properties which are not fulfilled by the two
tomographic scans being registered. As seen in figure 1.2a, the functional data returned
by a PET scan is of low sharpness and resolution. The lack of sharp edges impedes the
performance of line based similarity metrics. Regions, even if they can be identified de-
spite their blurred borders, often do not correspond directly to regions in the anatomical
scan as evidenced by the fusion of the slices in figure 1.3. Point based metrics working
with locations on edges suffer from the inability to find edges in the first place. Point
based metrics indicating distinctive changes in intensity also fail as changes occur grad-
ually throughout the image in the physiological scan and are concentrated around the
edges of homogeneously colored areas in the anatomical scan.

An additional shortcoming of many feature based metrics is their strong reliance on
contextual information. Better performance is achieved if more distinctive features can
be identified. This leads to approaches based on high-level features suitable to a single
application only. For example, [Rou96] details a technique for the alignment of satellite
images which matches urban areas and crossroads instead of generic areas and line
crossings. This tendency is not desirable in multi-modal medical registration. A general
method is sought that is able to register PET, SPECT and fMRI images with CT and
PET scans despite the differences between these modalities.

2.1.2. Image Based Approaches

The second class of similarity metrics are image based approaches. Instead of identifying
a set of features, they work directly with raw image data. To assess the quality of
alignment achieved by a transformation T , pairs of coinciding intensities u (xu) from
the reference and v (T (xu)) from the registered image are compared. There are two
different ways to evaluate the alignment. The first possibility is to compare intensities
from the entire images. The result is a single numerical quantity expressing the degree
to which the registered and reference image agree. By maximizing this quantity, the
correct alignment can be found.

The other option is the use of smaller windows arranged within the images in a pre-
defined pattern. Each window in the reference image is compared to all windows in the
registered image in order to determine which pairs constitute the closest matches. The
distance between matching windows then serves as a measure of alignment quality and
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the transformation is adjusted to minimize it. This metric should not be confused with
techniques that use image regions as features. The two important differences are that
there is no preprocessing step as windows are positioned irrespective of actual image
contents and that to determine matching pairs of windows, the intensities of the points
they contain are compared.

Whether windows are employed or not, image based approaches work by assessing the
level of agreement between two sets of intensities, one obtained from the reference image
and the other from the corresponding points of the registered image. An overview of
classical techniques is given in [Lew95]. They can be divided into two families:

Cross-Correlation

While cross-correlation is often directly defined [GW06], it can also be derived from
another similarity metric. For S a set of points in the coordinate frame of the reference
image, an intuitive measure of the similarity between the two images is the squared
Euclidean distance of their intensities at these points:

d2
u,v (T ) =

∑
xu∈S

[u (xu)− v (T (xu))]2 (2.1)

Under the assumption of constant energy throughout the registered image, the only
term varying under T is the cross-correlation:

Cu,v (T ) =
∑
xu∈S

u (xu) v (T (xu)) (2.2)

For most images, the energy distribution is not constant. Cross-correlation can be
normalized not to favor bright areas in such cases:

NCu,v (T ) =

∑
xu∈S

u (xu) v (T (xu))√ ∑
xu∈S

v2 (T (xu))
(2.3)

Even when normalized, cross-correlation is not an absolute measure. A related quan-
tity which expresses image similarity on the absolute scale of [−1, 1] is the normalized
correlation coefficient. With u the mean of u (xu) and v the mean of v (T (xu)) over all
xu ∈ S, it is given as:

NCCu,v (T ) =

∑
xu∈S

[u (xu)− u] [v (T (xu))− v]√ ∑
xu∈S

[u (xu)− u]2
√ ∑

xu∈S

[v (T (xu))− v]2
(2.4)

All of these techniques require a large number of multiplications to be performed for
each pair of images or windows being compared. [Lew95] lists several ways in which the
calculations can be accelerated to somewhat reduce the problem. Prefiltering can be
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2.2. Mutual Information

used to decrease variations in image energy making normalization unnecessary. After
rewriting the equations, some values can be tabulated. Finally, the Correlation Theorem
allows a calculation in the frequency domain after the images have been transformed via
FFT.

Sequential Detection

Sequential similarity detection algorithms were first introduced by [BS72] to improve
computational efficiency over cross-correlation based metrics. Instead of the squared
Euclidean distance between image intensities, they use absolute differences, eliminating
the need for multiplications. With u and v mean intensities as defined above, the plain
and normalized similarity metrics are:

Eu,v (T ) =
∑
xu∈S

|u (xu)− v (T (xu))| (2.5)

NEu,v (T ) =
∑
xu∈S

|u (xu)− u− v (T (xu)) + v| (2.6)

A sum is not evaluated fully but only until its value exceeds a certain threshold. The
faster this threshold is reached, the better the correspondence is deemed to be. The
result of this faster calculation is correct only if the points that were looked at are a
representative sample of all points in S. By traversing the members of S in random
order and setting the threshold high enough for a significant number of points to be
evaluated each time, a very high probability of correct assessment can be achieved.

2.1.2.1. Shortcomings

Numerous variations of the metrics described above exist, many of which are listed in
[Bro92] and [ZF03]. A fundamental weakness shared by all is the assumption of a linear
relationship between the intensities of corresponding points in the two images. Bright
points in the reference image are matched to bright points in the registered image and
similarly with dark points. This assumption is violated in multi-modal registration,
where, as seen in figure 1.3, the relationship between the two images can be more com-
plex. Bright areas in one image often correspond to dark areas in the other.

2.2. Mutual Information

Mutual information is a recently introduced similarity metric that addresses many of
the shortcomings found in traditional image based approaches. By also working on raw
image intensities, it does not introduce any of the additional requirements of a feature
based solution. There is no need for a preprocessing step and no dependency on detailed
contextual information. As is shown in the remainder of this chapter, mutual information
can be calculated efficiently so as to be suitable for 3D registration and is able to align
images of different modalities.
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2.3. Derivation

The concept of mutual information was first suggested by Claude Shannon in [Sha48]
more than fifty years ago. This paper started the field of information technology and
mutual information was one of its first tools. The definition of mutual information is
given not in the context of image registration but in that of random variables. In the
next two sections, the required concepts from probability theory are introduced. They
are described and their notations presented, but no formal definitions are given. For a
more complete and formal treatment of probability theory, see [Bil95].

2.3.1. Discrete Random Variables

A random variable X is a function whose numerical value is a priori unknown and
depends on the outcome of a random experiment. The possible outcomes are given by a
set ∆X , referred to as the sample space. If the set contains a finite or countable number
of elements, the random variable is discrete; otherwise, it is continuous.

Only discrete random variables are used throughout this thesis. Some of the variables
take on real numbers as their values, others vectors of such numbers. Each of the
following concepts is applicable in both cases. The value of a discrete random variable
such as x may therefore stand either for a scalar or a vector depending on the type of
variable. Only where a scalar is explicitly assumed the notation x is used.

The number of possible values for X is n = |∆X |. The likeliness of X taking on a
value xi ∈ ∆X is proportional to its probability P [X = xi]. Probabilities are assigned
to the xi by a density function fX so that P [X = xi] = fX (xi). The density function
satisfies three conditions:

∀ x ∈ ∆X : 0 ≤ fX (x) ≤ 1 (2.7)
∀ x /∈ ∆X : fX (x) = 0 (2.8)

n∑
i=1

fX (xi) = 1 (2.9)

When a discrete random variable is evaluated multiple times and the values recorded,
a sample is generated. As the sample gets larger, the average value of its elements
converges to the random variable’s expected value, which is defined as:

E [X] =
n∑

i=1

xifX (xi) (2.10)

Applying a function g to each outcome creates a new random variable g (X) with an
expected value of:

E [g (X)] =
n∑

i=1

g (xi) fX (xi) (2.11)
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2.3. Derivation

2.3.2. Pairs of Discrete Random Variables

A number of measures exist that express various aspects of the relationship between a
pair of discrete random variables X and Y . To analyze this relationship, a new random
variable Z = (X,Y )T is constructed. The values it takes on are vectors zk = (xi,yj)

T

where xi is the outcome of X and yj that of Y . The sample space is ∆Z = ∆X ×∆Y ,
each element of which as assigned a probability by the density function fZ :

P [Z = zk] = fZ (zk)
⇔ P [X = xi ∧ Y = yj ] = fZ (xi,yj)

(2.12)

fZ is the joint density function of X and Y as it represents the probability of the two
variables jointly taking on a pair (xi,yj) of values. Although it is usually named fX,Y

with no reference made to Z, each joint density function always is the density function
of an auxiliary random variable and all statements made about plain density functions
apply to it as well.

The density functions of X and Y may be reconstructed from fX,Y by calculating the
marginal densities:

fX (x) =
∑

yj∈∆Y

fX,Y (x,yj) (2.13)

fY (y) =
∑

xi∈∆X

fX,Y (xi,y) (2.14)

The conditional density function fXY =yj gives the conditional probability of X taking
on a value xi when the value Y is known to be yj . It is calculated by dividing the joint
density function of the two variables by the density function of Y :

fXY =yj (xi) =
fX,Y (xi,yj)
fY (yj)

(2.15)

By studying the conditional density function, it can be determined whether the two
variables are independent or not. If there is no dependency, the value of X is not
influenced by that of Y in any way. No matter which value yj is taken on by Y , X
always has the same density function fX :

∀ xi ∈ ∆X ,yj ∈ ∆Y : fXY =yj (xi) = fX (xi) (2.16)

After inserting equation (2.15) into (2.16), the formal definition of independence be-
tween X and Y is obtained:

∀ xi ∈ ∆X ,yj ∈ ∆Y : fX (xi) fY (yj) = fX,Y (xi,yj) (2.17)

If equation (2.17) is violated, the two discrete random variables are not independent.
Basic probability theory does not provide any way to quantify this dependency. The
problem is addressed by mutual information, which is a measure of the level of depen-
dency between X and Y .
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2.3.3. Entropy

The first important concept introduced in [Sha48] is that of the entropy of a discrete
random variable. It expresses the randomness of the variable’s outcome. High entropy
indicates that the variable can take on many different values with similar probability.
The other extreme is an entropy of zero which means that there is only one possible value
and no uncertainty exists. Given a set of additional formal criteria, Shannon shows that,
save for a scaling constant, the only possible definition of entropy is:

H [X] = −
∑

xi∈∆X

fX (xi) log fX (xi) (2.18)

By virtue of equation (2.11), this may be written as:

H [X] = −E [log fX (X)] (2.19)

Because scaling by an arbitrary positive factor is permitted, the base of the logarithm
may be chosen freely. If a base two logarithm and no additional scaling factor are used,
an alternative interpretation of entropy is possible. It can be understood as a measure
of the amount of information generated by X. Given full knowledge of the process used
to generate the values of X, an optimal coding scheme is chosen that, on average, is able
to encode a sample of values obtained from X in the least number of bits. The entropy
H [X] is then the average number of bits required to encode a single outcome using this
scheme.

A simple example that illustrates the concept is given in [Sha48]. X is a random
variable that indicates the result of a coin toss. The coin is biased so that heads occurs
with a probability of p and tails with q = 1 − p. The entropy of X, as defined by
equation (2.18), is:

H [X] = − (p log p+ q log q) (2.20)

The entropy is plotted in figure 2.1 as a function of 0 ≤ p ≤ 1. When p = 0, the
coin always shows heads and no bits are required to encode the result. As p increases,
there is a growing chance of the coin falling tails up. Because tails is still much less
likely than heads, an optimal code is able to express long streaks of heads with a symbol
consisting of a few bits so that on average, only a fraction of a bit is required to encode
each outcome. With p approaching 0.5, heads and tails are almost equally likely and the
code cannot save as many bits by more efficiently encoding heads. At p = 0.5, each toss
has exactly a 50% chance of being heads or tails. The completely unpredictable result
cannot be stored any more efficiently than with an entire bit per outcome. For p > 0,
analogous situations occur with the roles of heads and tails exchanged.

Instead of being interpreted as information contents in bits, figure 2.1 can also be
understood as a plot of a dimensionless measure of randomness. When there is an equal
chance for heads or tails, X is most random. With the bias increasing in either direction,
the outcomes become more predictable and X is considered less random.
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Figure 2.1: Entropy of a biased coin toss as a function of the bias

2.3.4. Joint and Conditional Entropy

As was done with the density function in the previous section, related measures can be
derived from the entropy H [X] for pairs of discrete random variables X, Y . The first is
the joint entropy of X and Y . In analogy to the definition of the joint density function,
it is simply the entropy of the random variable Z = (X,Y )T :

H [X,Y ] = −
∑

xi∈∆X ,yj∈∆Y

fX,Y (xi,yj) log fX,Y (xi,yj) (2.21)

The second measure is conditional entropy, which is the remaining entropy of X when
the value of Y is known. It is defined under the general assumption that yj is known, not
that it has a particular value. The entropy of X is therefore averaged over all yj ∈ ∆Y

weighted by their probabilities:

H [X Y ] = −
∑

xi∈∆X ,yj∈∆Y

fX,Y (xi,yj) log fXY =yj (xi) (2.22)

Joint and conditional entropy have several useful properties. Using the log-sum in-
equality it can be proven that knowledge of the value of Y may decrease but never
increase the entropy of X:

H [X Y ] ≤ H [X] (2.23)

Substitution of equations (2.15) and (2.14) into (2.22) leads to the corollary:

H [X Y ] = H [X,Y ]−H [Y ] (2.24)
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The derivations above can also be performed with the roles of X and Y exchanged:

H [Y X] ≤ H [Y ] (2.25)
H [Y X] = H [X,Y ]−H [X] (2.26)

2.3.5. Mutual Information

In the absence of any outside knowledge, the entropy of a discrete random variable X
is H [X]. According to equation (2.23), if the value of another discrete random variable
Y is determined, it may provide some information about X and reduce its entropy. The
amount by which the entropy decreases is known as mutual information:

MI (X,Y ) = H [X]−H [X Y ] (2.27)

Using the relationships in equations (2.24) and (2.26), alternative notations for the
mutual information of X and Y may be derived:

MI (X,Y ) = H [X]−H [X Y ] (2.28)
= H [X] +H [Y ]−H [X,Y ] (2.29)
= H [Y ]−H [Y X] (2.30)

Equation (2.30) is identical to (2.27) with X and Y exchanged. This shows that
mutual information is symmetrical and knowing the value of either variable decreases
the entropy of the other by the same amount:

MI (Y,X) = MI (X,Y ) (2.31)

Mutual information is a significant contribution to probability theory because it finally
allows the level of dependency between two discrete random variables X and Y to be
quantified. As was seen in section 2.3.3, entropy can be interpreted either as a dimen-
sionless measure of randomness or as information contents in bits. The same applies to
mutual information:

Mutual Information as Dimensionless Quantity

When considered dimensionless, mutual information is expressed in terms of entropies.
X has an entropy H [X] which indicates how random and hard to guess its outcome is.
As the value of Y is determined, it provides additional information about X, decreasing
its entropy to H [X Y ], making it less random and easier to guess. The reduction
in entropy is MI (X,Y ). If X and Y are independent, nothing new is learned and
MI (X,Y ) = 0. With increasing level of dependency, more is revealed about X and
MI (X,Y ) increases. The maximum is reached at MI (X,Y ) = H [X] when the two
variables are identical and knowledge of the outcome of one instantly reveals the value
of the other.
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Mutual Information as Information Contents

An example is given. Consider a discrete random variable X that can take on 256
different values, each with an equal probability of pi = 1

256 . According to equation (2.18),
the entropy (calculated using base two logarithms) is H [X] = 8. The outcome of X
is completely random and 8 bits are required on average to encode it. Now consider a
discrete random variable Y that can take on only two values Y = 0 if the value of X is
odd and Y = 1 if it is even. If the value of Y is determined, it cuts the number of possible
values of X in half. According to equation (2.22), H [X Y ] = 7. The amount of new
information produced by X is decreased by MI (X,Y ) = 1 bit. As mutual information
is symmetrical, knowledge of the value of X also decreases the entropy of Y by one bit.
Since Y has an initial entropy of H [X] = 1, it drops to zero. This is logical because if
the outcome of X is known, it is immediately apparent whether it is odd or even.

2.4. Application to Image Registration

The use of mutual information as a similarity metric in image registration was first
suggested by [Vio95]. The intensities of the two images are interpreted as the outcomes
of discrete random variables. For any point xu in the reference coordinate frame, the
reference image intensity u (xu) is considered to be the value taken on by a random
variable X. Similarly, the registered image intensity v (T (xu)) is the outcome a random
variable Y .

If the images have been correctly aligned, xu and T (xu) truly are corresponding
points. The assumption is made that this also means there is a relationship between
their intensities. Knowing the value of u (xu), certain values of v (T (xu)) are more
and others less likely. In terms of random variables, knowledge of the outcome of X
provides information about that of Y . The mutual information of the two variables is
MI (X,Y ) > 0. If, on the other hand, the two images are not correctly aligned, u (xu)
and v (T (xu)) are the intensities of completely unrelated points. Knowledge of the first
provides no hints as to the value of the other. The outcome of X reveals no information
about that of Y and MI (X,Y ) = 0.

In reality, many misalignments also lead to mutual information being greater than
zero. This may be because the error in alignment is very small or because completely
unrelated structures have been overlaid that happen to show some relationship between
their intensities. Still, if the correct alignment is found, there should be correspondence
not only in some areas but throughout the entire image, leading to a maximum of
MI (X,Y ). When using mutual information as a similarity metric, the transformation
that leads to this maximum is sought.

There is a certain similarity between mutual information and the cross-correlation
based techniques described in section 2.1.2. In both cases, the assumption of a rela-
tionship between the intensities u (xu) and v (T (xu)) is made. However, while cross-
correlation considers only a linear dependency where intensities are scaled by some pos-
itive factor from one image to the other, mutual information accounts for arbitrarily
complex relationships. This makes mutual information suitable for multi-modal regis-
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tration, where readings from different types of sensors that assign intensities based on
different phenomena are registered. It should be noted that the relationship does not
have to actually be known as it is never used in an explicit form. Also, the dependency
may be, and in most cases is, incomplete, with u (xu) providing not the exact value of
v (T (xu)) but only some information about it.

Since both the exact information contents of the two images and the nature of their
relationship are unknown, the maximal value of MI (X,Y ) can a priori not be deter-
mined. The registration process, in its search for a maximum, cannot know whether
the present value of MI (X,Y ) is globally optimal or a mere local extremum. Like the
other similarity metrics introduced in this chapter, mutual information cannot guarantee
that the perfect alignment will be found. It is up to the search strategy to perform the
registration in such a way that ending up in a local maximum is not likely.

A problem that needs to be solved before mutual information may be used as a simi-
larity metric is that given two images, it is not directly possible to calculate MI (X,Y ).
All of the formulas developed in section 2.3.5 require knowledge of the random variables’
entropies. The calculation of these relies on the availability of density functions. The
formula suggested by [Vio95] is that of equation (2.29):

MI (X,Y ) = H [X] +H [Y ]−H [X,Y ] (2.32)

As shown in sections 2.3.3 and 2.3.4, to evaluate this expression, the density functions
fX of X, fY of Y and their joint density function fX,Y are required. Since neither of
them is known, they need to be somehow extracted from the image data.

2.5. Density Estimation

A series of intensity values taken from an image represents a sample of the discrete
random variable associated with it. Reconstruction of the density function from such a
sample is known as density estimation. The term estimation is used for three reasons.
For one, the sample may not be representative of the exact probabilities throughout the
entire image. The density function found will then not precisely fit the random variable.
Second, the sample may not provide enough information to unambiguously determine a
density function. For example, it can be shown that in the case of continuous random
variables, there is an infinite number of functions that fit each sample. Finally, an exact
solution may not always be desired. To save computation time or to obtain a simple
closed form expression, a density function may calculated that only approximates the
actual probabilities in the sample.

2.5.1. Gaussian Distribution

The density function of the Gaussian, or normal, distribution is an important element of
several density estimation techniques. It is also encountered in many other application
areas. Although this is a family of functions associated with continuous random vari-
ables, it is also very useful when working with their discrete counterparts. The density
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Figure 2.2: Scalar Gaussian density functions for different combinations of µ and σ2

function of a normally distributed scalar random variable is given as [Bil95]:

fNµ,σ2 (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (2.33)

A function from this family is selected by specifying the values of its two parameters,
the mean µ and variance σ2. Density functions obtained for several combinations of
parameters are plotted in figure 2.2. As is apparent from this plot, the functions always
retain the same bell shape. The position of the bell’s center is determined by µ while its
width depends on the value of σ2.

The family of Gaussian density functions can also be extended to random variables
that take on vectors of real numbers as their values. For an N -dimensional normally
distributed random variable, the density function is [Bil95]:

fNµ,Σ
(x) =

1

(2π)
N
2
√
|Σ|

e−
1
2
(x−µ)T Σ−1(x−µ) (2.34)

Each function describes an N -dimensional bell shape. The position of the bell’s center
is given by the N -dimensional vector µ and its size by the N × N covariance matrix
Σ; |Σ| is the determinant of this matrix. Figure 2.3 shows an example plot of a two-
dimensional Gaussian density function. An analysis of the exact influence of each entry
in the covariance matrix is not required for this thesis. It is sufficient to note that the
eigenvalues determine the scaling of the bell shape along axes whose directions depend
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Figure 2.3: Two-dimensional Gaussian density function for µ = 0 and Σ = I

on the relative values of the matrix elements. To reduce the number of parameters that
need to be specified, the coordinate axes are often used. Scaling factors are then given
by the entries on the main diagonal while all other elements are set to zero.

Because Gaussian density functions belong to continuous random variables, they fulfill
different criteria than those set forth in equations (2.7) to (2.9). Instead of adding up
to one, their values integrate to one. It is apparent from figure 2.2 that, as the variance
gets smaller and the bell thinner, it also needs to grow taller if the area underneath it is
to remain constant. The condition of equation (2.7) is therefore relaxed from 0 ≤ f ≤ 1
to 0 ≤ f . It follows that the values of a continuous density function are not probabilities
as they are neither bounded above by 100% nor required to add up to this value.

2.5.2. Parametric Estimation

There are two general approaches to density estimation – parametric and non-parametric.
For parametric estimation, a family of density functions is chosen first. The parame-
ters which characterize individual members of this family are then adjusted to find the
function that most closely resembles the probability distribution in the sample. Vari-
ous families of density functions and different techniques for finding the optimal set of
parameters can be used.

An example given in [Vio95] highlights popular choices for the two components. Fol-
lowing the central limit theorem [Bil95], a Gaussian density function can be a good
approximation of the true density in many cases. The optimization criterion is maxi-
mum likelihood. The set of parameter values is sought for which the given sample is most
likely to occur. In order to find this parametrization, a likeliness function is constructed
and its derivatives calculated. A gradient descent search, as described in chapter 3, is
then performed to arrive at the optimum.

Even without stating the precise algorithm used, several of its weaknesses are obvious.
One problem is that to determine an approximate density function, an entire optimiza-
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tion process is required. This is a costly procedure that, in the case of mutual information
used as a similarity metric, would need to be repeated for each iteration of the regis-
tration algorithm. Optimization gets more complicated and computationally expensive
with the number of parameters to be determined. When estimating a two-dimensional
density function, such as fX,Y , the Gaussian family already offers six parameters. This is
why, as described in the previous section, most of the elements of the covariance matrix
are set to zero and never optimized. Also, for many families of functions it cannot be
guaranteed that the process will locate the optimal set of parameters. As with mutual
information itself, optimization may be constricted by local extrema.

The most important shortcoming of this approach is that a family of density functions
needs to be chosen first. An image registration technique should not be limited to a small
selection of images that have very similar intensity distributions. All images from an
application domain such as physiological tomographic scans should be handled. This
makes it impossible to determine beforehand what kind of function will be needed.

An attempt to overcome this problem is found in Gaussian mixture models [MB88].
Instead of assuming a particular family of density functions, the true distribution of the
probabilities in the sample is approximated by overlaying several Gaussian bell shapes.
Each Gaussian offers two parameters1, which allow it to be positioned and its width
and height to be set. This leads to a more versatile density estimation that, depending
on the number of Gaussian bells used, can approximate arbitrarily complex probability
distributions with high precision. The flipside is that the number of parameters to
be optimized is greatly increased, making it more difficult and time-consuming to find
suitable values. The conclusion has to be made that for mutual information based image
registration, parametric density estimation is either too inflexible or too computationally
expensive.

2.5.3. Histogram

The second possible approach to density estimation is non-parametric. No assumption
about the shape of the density function is made. Instead, it is constructed directly from
the intensities in the sample. The simplest such technique is the näıve histogram. Each
intensity is assigned a probability that is directly proportional to the number of times it
appears in the given sample. This leads to a density function that perfectly resembles
the sample’s probability distribution. As outlined in section 2.5, for the density function
to also fit the entire image, the sample needs to be representative. The only way to
guarantee this for every image is to use all of its voxel intensities.

For a small image, a histogram can be calculated very quickly. The amount of pro-
cessing time required per point is minimal as all that needs to be done is to increase the
count of points sharing its intensity. However, the computational cost increases linearly
with the size of the dataset and makes histograms unsuitable to 3D registration with its
large volumetric images. A second weakness is that the histogram produces an empirical
representation of the density function, which cannot be differentiated. In consequence,

1More parameters are of course present in the case of higher dimensionality.
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it is impossible to calculate any derivatives of the mutual information. As will be seen
in chapter 3, all but the most basic search strategies rely on derivatives to guide the
registration process.

2.5.4. Parzen Window Technique

A technique that improves on the histogram both in terms of computation time and
the ability to calculate derivatives was proposed by Parzen in [Par62]. It is referred to
as kernel or Parzen window density estimation. Given a sample SA that consists of
NA values obtained by evaluating the random variable X, an estimate of the variable’s
density function is:

fX (x) ≈ 1
NA

∑
xi∈SA

K (x− xi) (2.35)

This estimate is constructed by centering a window function K around each point
xi. Where in a histogram every point in the sample only increases the probability of
its own value, K spreads this influence to neighboring values. The window function can
be chosen freely and [Par62] suggests a number of possibilities. The only limitation is
that if the result is to be a valid density function, so must be K. When each K assumes
only values in [0, 1] that add up to one, the sum of all NA of them weighted by 1

NA
has

the same properties. Despite this easy way to ensure that a valid density function is
constructed, it may be desirable to choose a K that does not meet these requirements.
[Vio95] suggests the use of a Gaussian density function with mean zero as K even though
it is not a valid density function for discrete random variables.

The Gaussian density function has two properties that make it a good choice for K in
image registration. Due to its shape, shown in figures 2.2 and 2.3, each sample point xi

causes an increase in the probability of intensities that is larger the closer they are to its
own. This is in line with the intuitive assumption of a certain smoothness throughout
the image. An intensity encountered in the sample may mean that similar intensities are
to be found in its vicinity but does not provide any information about intensity values
far from its own. The second property is that because the width of the bell shape can
be easily set by means of the variance or covariance matrix, different estimators can be
constructed simply by adjusting that parameter.

Parzen windows allow for an estimation of the density function with a sample size
far smaller than that required by a histogram. If the sample size is small, it may not
be precisely representative of the entire image. Some of the intensities that appear
infrequently are likely to be completely missing. Using a histogram, the probability
of such intensities would be falsely set to zero. With a Parzen window, neighboring
intensities contribute increases in probability leading to a smooth density function that
assigns nonzero probabilities to all intensities, even those absent from the sample. The
smoothing also applies to all other probabilities. If there is a cluster of intensities that all
appear with similar frequency, the density function will assume a similar shape regardless
of which of them is present in the sample slightly more or less often by pure chance.

Figure 2.4 shows three estimates for the density function of a scalar discrete random
variable X with ∆X = {0, 1, . . . , 15}. They have been constructed from a sample of
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Figure 2.4: Histogram and Parzen window based estimates of a density function

size NA = 32. The first estimate is a histogram that directly represents the probability
distribution in the sample. The other two estimates are based on the Parzen window
technique with a Gaussian density function as K. With increasing variance of K, the
Parzen windows generate a more smooth approximation to the histogram shape. It can
also be seen that the approximations are not valid density functions since their values
for all x ∈ ∆X do not add up to one. As was explained above, this is a consequence of
the Gaussian density function only being valid for continuous random variables.

A Parzen window density estimator employing Gaussian density functions is similar
to the Gaussian mixture models mentioned in section 2.5.2. However, the former is
non-parametric and can be constructed directly from a sample while the latter require
a series of parameters to be laboriously determined.

2.6. Similarity Metric

Using the Parzen window technique to estimate density functions, an estimator for the
mutual information of two images may be constructed. Unfortunately, direct calculation
of the required entropies following equations (2.18) and (2.21) is computationally very
expensive. As seen in section 1.3.2, the images used in this thesis have integer intensities
in the range of [0, 255]. To estimate the entropy of X, a sum over all of its 256 possible
values is calculated. Each addend requires fX to be approximated for a different inten-
sity, which in turn requires the summation of the effects of NA parzen windows. The
result is a nested sum with 256NA terms to evaluate. The same numbers apply to the
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estimation of H [Y ]. For the joint entropy, 2562 = 65536 different intensity combinations
are possible leading to a nested sum of 65536NA terms.

A method for estimating the entropies without having to evaluate these large sums
is proposed in [Vio95]. It is based on the concept of the expected value introduced in
section 2.3.1. In that section, it was noted that with increasing sample size, the average
of a sample converges to the expected value of the variable it was drawn from. According
to equation (2.19), the entropy of X is the negated expected value of the discrete random
variable log fX (X). It can therefore be approximated by the average of a sample SB,X

of size NB obtained from that variable:

H [X] ≈ − 1
NB

∑
xi∈SB,X

log fX (xi) (2.36)

If the estimated probability fX (xi) of any xi is very low, it will get aliased to zero
due to the limited precision of a computer. To cope with this case, log 0 := 0 is defined,
as proposed by [Vio95].

Insertion of the Parzen window based estimate for fX constructed from a sample SA,X

of size NA using Gaussian density functions with mean zero and variance σ2
X as window

functions yields:

H [X] ≈ H? [X] = − 1
NB

∑
xi∈SB,X

log
1
NA

∑
xj∈SA,X

fN
0,σ2

X

(xi − xj) (2.37)

An approximation formula for H [Y ] may be analogously obtained:

H [Y ] ≈ H? [Y ] = − 1
NB

∑
yi∈SB,Y

log
1
NA

∑
yj∈SA,Y

fN
0,σ2

Y

(yi − yj) (2.38)

Since the joint entropy H [X,Y ] is defined as the entropy of a discrete random variable
Z = (X,Y )T , the same derivation can be performed for it as well. The samples SA and
SB contain pairs of values which have been obtained from X and Y . The Gaussian
density functions are two-dimensional with mean zero and covariance matrix Σ:

H [X,Y ] ≈ H? [X,Y ] = − 1
NB

∑
zi∈SB

log
1
NA

∑
zj∈SA

fN0,Σ
(zi − zj) (2.39)

By inserting the approximations of the three entropies into equation (2.29), an esti-
mation formula for the mutual information is finally constructed:

MI (X,Y ) ≈MI? (X,Y ) = H? [X] +H? [Y ]−H? [X,Y ] (2.40)

2.6.1. Alignment Quality

To turn equation (2.40) into a measure that can readily be evaluated given two images,
the random variables’ values need to be explicitly expressed as image intensities. For
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this, points xi in the reference coordinate frame are stored in the samples SA and SB.
The intensity of the reference image at a point in the sample is then u (xi) and that of
the registered image is v (T (xi)). The mutual information for a transformation T is now
estimated as:

MI? (X,Y ) =

− 1
NB

∑
xi∈SB

log
1
NA

∑
xj∈SA

fN
0,σ2

X

(u (xi)− u (xj))

− 1
NB

∑
xi∈SB

log
1
NA

∑
xj∈SA

fN
0,σ2

Y

(v (T (xi))− v (T (xj)))

+
1
NB

∑
xi∈SB

log
1
NA

∑
xj∈SA

fN0,Σ

((
u (xi)

v (T (xi))

)
−
(

u (xj)
v (T (xj))

))
(2.41)

While this formula looks rather complex, it can be very efficiently calculated. Each
nested sum contains NANB terms so that the computation time is primarily decided
by the sizes of the two samples. As will be shown in chapter 7, realistic values range
from several hundred to a few thousand entries per sample. In comparison to other
image based similarity metrics which iterate over all voxels in the images, this amounts
to a very considerable savings. It is also vastly more efficient than the evaluation of the
65536NA terms needed for a direct calculation of H [X,Y ]. Additionally, the formula
lends itself to a series of simplifications. Because only a small number of intensity
differences are possible, the values of the Gaussian density functions can be tabulated.
If the sampling positions remain constant throughout the entire registration process,
H? [X], corresponding to the first row of the formula, never changes. It can be calculated
once at the beginning of the registration and then reused.

Of course, the similarity metric also has weaknesses. It only approximates the mutual
information of the two images so that if the sample sizes are chosen too small, the optimal
alignment may not be found. Another problem is that the variances and covariances of
the Gaussian density functions used in by the Parzen window density estimation must be
decided. How this should be done will be addressed in section 2.6.3. At this point, it is
only noted that in line with the considerations made in section 2.5.1 when the Gaussian
density function was first introduced, the covariance matrix is assumed to be diagonal:

Σ =
(
σ2

X,X 0
0 σ2

Y,Y

)
(2.42)

2.6.2. Derivative of Alignment Quality

Besides an assessment of the quality of the current alignment, the similarity metric must
provide the data necessary to improve this alignment. As will be seen in chapter 3,
the information required by the search strategy is in most cases the derivative of the
similarity metric with respect to the transformation parameters T . A few notations are

31
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introduced to make the derivative of MI? [X,Y ] more legible:

vi =v (T (xi)) wi =
(

u (xi)
v (T (xi))

)
(2.43)

WY (vi, vj) =
fN

0,σ2
Y

(vi − vj)∑
xk∈SA

fN
0,σ2

Y

(vi − vk)
WX,Y (wi,wj) =

fN0,Σ
(wi −wj)∑

xk∈SA

fN0,Σ
(wi −wk)

(2.44)

With these notations, the derivative of equation (2.41) is:

d

dT
MI? (X,Y ) =

1
NB

∑
xi∈SB

∑
xj∈SA

WY (vi, vj) (vi − vj)
1
σ2

Y

(
d

dT
vi −

d

dT
vj

)

− 1
NB

∑
xi∈SB

∑
xj∈SA

WX,Y (wi,wj) (wi −wj)
T Σ−1

(
d

dT
wi −

d

dT
wj

) (2.45)

Noting that the covariance matrix is diagonal as per equation (2.42) and d
dT u (xi) = 0

for all xi, this further simplifies to:

d

dT
MI? (X,Y ) =

1
NB

∑
xi∈SB

∑
xj∈SA

[
WY (vi, vj)

1
σ2

Y

−WX,Y (wi,wj)
1

σ2
Y,Y

]

(vi − vj)
(
d

dT
vi −

d

dT
vj

) (2.46)

The computational complexity of a derivative calculation is similar to that of calculat-
ing the mutual information itself. A nested sum of NANB terms needs to be evaluated
again. Although WY and WX,Y internally contain sums with NA addends each, these
only need to be evaluated once for every point in SB, leaving the complexity at NANB.

To evaluate the terms d
dT vi and d

dT vj , knowledge of the exact transformation function is
needed. This part of the calculation will therefore be addressed in chapter 4. Depending
on the transformation type and its number of parameters, the terms may be scalars,
vectors or even matrices. Their dimensionality determines the dimensionality of the
entire derivative because equation (2.46) is a weighted sum of these terms.

2.6.3. Parzen (Co-)Variances

A method for automatically calculating the optimal values of the Parzen window func-
tion variances and covariance matrix is devised by Viola in [Vio95]. Unfortunately, it can
easily be demonstrated that this method will not work in practical applications. Follow-
ing the classical maximum likelihood approach, the value of the (co-)variance parameter
is sought which makes the intensity distribution encountered in sample SB most likely
to occur given the estimated density function. Viola shows that this value is always the
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one that makes the estimated entropy minimal. Thus, for example, σ2
X should be chosen

so that H? [X] is minimized:

σ̃2
X = arg min

σ2
X∈R+

− 1
NB

∑
xi∈SB

log
1
NA

∑
xj∈SA

fN
0,σ2

X

(u (xi)− u (xj)) (2.47)

It is then proposed to begin with an empirical guess for the variances and covariance
matrix and optimize them in parallel to the registration process. This could be accom-
plished for example by using stochastic gradient descent or the EM algorithm of [Bil98].
While the idea is correct in theory, it fails in practice because of the limited precision of
a computer. The behavior of the Gaussian density function for decreasing σ2

X is:

lim
σ2

X→0
fN

0,σ2
X

(u (xi)− u (xj)) =

{
0 if u (xi) 6= u (xj)
∞ if u (xi) = u (xj)

(2.48)

For every xi ∈ SB, if there is a point xj ∈ SA that has the same intensity, the inner
sum in equation (2.47) will tend toward infinity and so will its logarithm. If there is no
point xj ∈ SA with the same intensity as xi, the inner sum will tend toward zero and
its logarithm to negative infinity. Unless every intensity of sample SB also occurs for
sample SA, there will be at least one inner sum that approaches negative infinity. This
effect will be dominant because the decay is much faster than the growth. As a result,
the entire expression of equation (2.47) will approach infinity leading the optimization
process away from values of σ2

X very close to zero.
The limited precision of a computer changes this behavior. Because the Gaussian

density function falls exponentially as σ2
X → 0, its values quickly becomes so small that

they are aliased to zero. The result is that each inner sum either approaches positive
infinity or is precisely zero. The logarithm in the first case also approaches infinity while
in the second case, due of the definition log 0 = 0 made earlier, is zero. Equation (2.47)
thus tends toward negative infinity. This leads the optimization process to decrease σ2

X

giving it a value as close to zero as possible. The same occurs for σ2
Y and the elements

of the covariance matrix.
This unfortunate behavior is a consequence of the limitations of a computer and cannot

be easily prevented. Although it only occurs if at least one intensity appears in both
samples, this is a very likely event due to there being only 256 different intensities.
A helpful observation made in [Vio95] is that the Parzen window density estimate is
relatively insensitive to the precise value of the variance or covariance matrix as long as
it is roughly within the correct order of magnitude.

The solution that has been adopted for this thesis therefore is to empirically determine
variance and covariance values that lead to correct registration for a variety of images
from the application domain. Although the parameters will not be optimal for each set
of images, they have been found to be sufficient for the registration of every available
pair of scans.
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2.7. Normalized Mutual Information

An alternative similarity measure based on mutual information is proposed in [SHH99].
It was found that mutual information may increase when the misalignment is such that
there is very little overlap between the two images. To overcome this problem, the
measure of normalized mutual information was developed, which is insensitive to the
amount of overlap:

NMI (X,Y ) =
H [X] +H [Y ]
H [X,Y ]

(2.49)

Normalized mutual information can be estimated as efficiently as plain mutual infor-
mation using the Parzen window technique. However, the situation is different for the
derivative with respect to transformation parameters T . In the case of mutual informa-
tion, only the derivatives of H [Y ] and H [X,Y ] need to be estimated. For normalized
mutual information, it is also necessary to approximate the actual entropies of X and Y
and their joint entropy:

d

dT
NMI (X,Y ) =

(
d

dTH [Y ]
)
H [X,Y ]− (H [X] +H [Y ]) d

dTH [X,Y ]

(H [X,Y ])2
(2.50)

It has been found during the experiments conducted for this thesis that if the reg-
istration is started with the two images largely overlapping, there is little risk of the
registration process moving them toward very low overlap. Mutual information was
therefore chosen over normalized mutual information for its lower computational cost.
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3. Search Strategy

The search strategy provides the link that combines a similarity metric and a transforma-
tion type into a complete registration technique. Using the information made available
by the similarity metric, it adjusts the transformation parameters to improve the align-
ment and drive the registration process toward completion. The choice of search strategy
therefore depends both on the similarity metric and the transformation type being used.

One criterion to be considered is the quality of the data produced by the similarity
metric. If it calculates only rough or noisy estimates of the alignment quality, a robust
search strategy is required that can arrive at a proper alignment despite these impre-
cisions. If, however, the similarity metric is highly accurate, there is no need for such
robustness. A strategy is then more suitable that relies on the quality of the assessment
provided by the similarity metric and trades the robustness for a faster registration
process.

A second criterion is the type of data that the similarity metric is able to calculate.
Some metrics only produce an assessment of the current alignment quality. Others
can also provide derivatives of this quantity or indicate which points exactly in the two
images should coincide. Only a search strategy that exploits all the information available
makes optimal use of the similarity metric.

Finally, some search strategies are only suitable for particular types of transformations.
This may be because due to their simplicity, they cannot handle complex transformations
with many parameters. Another possibility are strategies which are tuned to one type
of transformation so that they can make assumptions about the transformation function
which are then used to provide faster and more robust registration.

3.1. Survey of Strategies

Overviews of many popular search strategies are given in [Bro92] and [ZF03]. Most
of these strategies are used in registration techniques based on algorithm 1.1, making
adjustments to the transformation parameters in each iteration and gradually improving
alignment quality. Some strategies also exist that, given a suitable similarity metric, are
able to directly calculate the correct alignment, eliminating the need for an iterative
process.

3.1.1. Specialized Techniques

A very large number of specialized search strategies have been developed that provide
fast and accurate registration for a limited class of transformation types. They include
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decision sequencing, relaxation, dynamic programming, the generalized Hough trans-
form and linear programming. Each makes a series of assumptions about the transfor-
mation function, generally precluding the complex transformations necessary to correct
complicated misalignments. These techniques can therefore not be used when align-
ing tomographic scans with possible small changes in the shapes of the patient’s inner
organs.

Another group of search strategies are those based on point matching. They are
used in combination with feature-based similarity metrics where information about the
correspondence of the features in the two images is available. From the displacement
between corresponding features, a new transformation can be calculated that aligns the
features and undoes the misregistration. Such techniques may be able to determine a
suitable transformation in a single step but cannot be combined with mutual information
as this is an image based similarity metric.

3.1.2. Näıve Search

The simplest general search strategy that can be applied to any transformation type
is a näıve search. The parameter space is simply searched exhaustively, trying each
combination and locating the one that leads to the best alignment. While this approach
is guaranteed to find the optimal alignment if the similarity metric provides correct
information, it is also prohibitively expensive for all but the most simple transformation
types. As the number of parameters and the range of values they can take on are
increased, the cost of a näıve search quickly grows. If any parameter can take on a range
of real numbers as values, the number of parameter combinations to be tried becomes
infinite and näıve search cannot even be completed in finite time.

Despite its obvious shortcomings, näıve search has the one advantage that the only
information required from the similarity metric is an assessment of the alignment quality
achieved by the current parameter values. More advanced techniques need additional
data to be available.

3.1.3. Gradient Ascent

Gradient ascent is a simple iterative search strategy that uses the derivative of the
alignment quality with respect to the transformation parameters T . For each parameter,
the derivative expresses how strongly and in which direction the alignment quality is
expected to change if the parameter’s value is increased. Because this assessment is
valid only for the current values of the parameters T , only small changes should be
based on it. After these changes, the derivative needs to be reevaluated, which is done
in the next iteration.

If the metric is to be maximized, a positive derivative means that the value of a
parameter should be increased while a negative derivative indicates that it should be
decreased. The magnitude of the derivative is an indication of how large the change
should be. If the derivative is close to zero, only a small step should be taken as the
derivative may become zero or change sign after this change. When the magnitude of the
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derivative is large, a larger step is likely to be permissible before the derivative changes
its sign. Each parameter is therefore adjusted by adding a value that is proportional to
the derivative of the similarity metric S with respect to it. This can be expressed for
the entire set of parameters T as:

T ← T + λ
d

dT
S (3.1)

λ is the step size that determines by how much the parameters should change. If
it is chosen too large, the search may oscillate about the optimal parameter values,
alternatingly increasing and decreasing them, each time jumping over the values at
which the derivatives become zero. If the step size is too small, registration takes a
long time because the parameters are adjusted only in small increments. This problem
may be overcome by beginning with a large step size and reducing it as registration
progresses.

Gradient ascent is simple, efficiently calculated and leads to steady improvement of
the alignment quality as long as the derivatives calculated by the similarity metric are
reliable. It can also readily be adapted to similarity metrics that need to be minimized,
not maximized. The step size is simply negated so that when the derivative with respect
to a parameter is positive, its value is decreased and vice versa. This is known as gradient
descent.

It is also possible to take into account some conditions imposed on the parameters by
the transformation type. If the values of a parameter should stay within a predefined
interval, it can be checked after each iteration whether the current value is acceptable
and if not, to reset it to the closest boundary of the interval. If some parameters should
be adjusted more quickly than others, for example favoring a translation over a rotation,
different step sizes may be used for each.

A limitation of gradient ascent is that it finds only local extrema. Beginning with the
initial values, the parameters are adjusted to continually increase the value of S, tending
toward the closest local maximum. If there is a set of parameters that leads to an
even better alignment but the value of S would temporarily decrease on the way there,
gradient ascent is unable to find this solution. This search strategy should therefore
only be used in conjunction with unimodal similarity metrics, where the single local
maximum is also globally optimal.

3.1.4. Conjugate Gradients

Like gradient ascent, the conjugate gradient method [She94] is based on the derivatives of
the alignment quality with respect to the transformation parameters. However, because
the direction in the parameter plane in which an adjustment step is taken is chosen
more carefully, a good alignment may be found in fewer iterations. Unfortunately, this
method is not able to remove the limitation to unimodal similarity metrics as it also
locates only local extrema.
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3.2. Stochastic Gradient Ascent

Stochastic gradient ascent is closely related to gradient ascent as described in sec-
tion 3.1.3. In fact, its mathematical formulation is identical. The difference is that the
derivatives of the alignment quality are estimated and not precisely calculated. Their
values can therefore deviate from the true derivatives due to the random noise intro-
duced by the estimation process. It is suggested in [Vio95] that gradient ascent using
such noisy derivatives not only leads to successful registration but may even produce
better results than traditional gradient ascent.

Because the derivatives are noisy, each iterative step does not necessarily bring the
parameter values closer to the nearest extremum. The noise superimposes a movement
in a random direction in the parameter plane. Registration can only be successful if the
noise is small compared to the magnitude of the true derivatives. For the derivative of
mutual information calculated using equation (2.46), the amount of noise depends on
the sizes NA and NB of the two samples and the Parzen window variances. As will be
seen in chapter 7, by increasing the sample sizes and variances, the noise can be made
arbitrarily small.

A second prerequisite for a finite registration process is that λ be decreased as regis-
tration progresses. Otherwise, even if optimal parameter values were found, a random
step away would be taken again and registration would never finish.

While noisy derivatives are problematic, they can also serve as an advantage. This
occurs in the situation that the similarity metric in itself is also noisy, as is the case
for MI?. Because random noise results in local extrema, traditional gradient ascent
is likely to find a local noise maximum and fail to properly align the two images. As
will be shown in chapter 7, stochastic gradient ascent may be able to skip over noise
maxima and determine the optimal alignment if the magnitude of the noise in the metric
is sufficiently small.

With d
dTMI? the noisy estimate for the derivative of mutual information obtained

from equation (2.46), the iterative step of stochastic gradient ascent as used in this
thesis can be expressed as:

T ← T + λ
d

dT
MI? (3.2)

3.3. Multiresolution

Multiresolution is a technique that can be used to improve the computational efficiency of
iterative search strategies [ZF03]. It is based on the observation that when the reference
and registered image are scaled down, the similarity metric can be evaluated using fewer
operations. If the metric uses the intensities of all voxels, there are fewer voxels to
consider. For a metric based on random samples, the samples can be made smaller
because the images contain less details and less information. However, when scaled-
down versions of the images are aligned, the details eliminated by the scaling process
cannot be considered. The alignment may thus not be as precise. Small deformations
such as changes in organ shape can also not be corrected if they have been removed from
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the images.
In a multiresolution approach, the images are therefore scaled to several different sizes

and their alignment determined consecutively, starting with the smallest versions. Once
a transformation T has been found that satisfactorily aligns the two images, images of
the next higher resolution are registered with T as the initial transformation. The effect
is that all aspects of the misalignment are corrected using the smallest possible images,
minimizing the computational cost. Only adjustments which require more details are
left to the next higher resolution.

A series of images generated by repeatedly decreasing the size of the previous image
are known as an image pyramid. The simplest method for generating a smaller image
I ′ from a larger one I is subsampling. For example, when halving the size of the image
in each dimension, only the intensity of every second voxel per coordinate is used:

I ′ (x, y, z) = I (2x, 2y, 2z) (3.3)

The problem of this approach is that it is prone to aliasing. Because only one voxel
in eight is retained, small details are misrepresented. Before subsampling, the image I
should therefore be low-pass filtered to remove such details, which correspond to high
frequency information. This is most popularly done using Gaussian smoothing, resulting
in a Gaussian pyramid [Bur81].

Smoothing is performed by replacing each voxel intensity I (x, y, z) with a weighted
sum of neighboring intensities. The weights are determined by a three-dimensional
Gaussian density function centered at (x, y, z). As the covariances are set to zero, the
density function becomes separable. An equivalent smoothing can then be obtained
more efficiently by consecutively weighting the intensities along their three coordinates
using a one-dimensional Gaussian density function as defined by equation (2.33) and
plotted in figure 2.2.

Because intensities are stored only at discrete voxel locations, the continuous density
function must be discretized in such a way that the weights at these locations add up
to one, preserving the average intensity level of the original image. This is done by
using the density function of the binomial distribution instead, which is discrete and
approximates the Gaussian:

fBn,p (x) =

{(
n
k

)
px (1− p)n−x 0 ≤ x ≤ n

0 otherwise
(3.4)

p controls the symmetry of the approximated bell shape and is set to p = 0.5. The
value of n then determines the variance, which is σ = np (1− p). A larger n means that
a wider Gaussian bell is approximated using more neighboring voxel intensities. This
leads to a higher quality smoothing but increases the computational cost. The value
used in this thesis is n = 4 so that the intensities of five voxels are always weighted. The
weights obtained from fB4,0.5 are listed in table 3.1.

After the smoothing has been applied, the size of the image is halved in each dimen-
sion by subsampling following equation (3.3). Pyramids with a total of five levels are
generated for the reference and registered image. Level 0 is the original dataset and each
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1
16 × 1 1

16 × 4 1
16 × 6 1

16 × 4 1
16 × 1

Table 3.1: Weights for neighboring voxels in Gaussian smoothing

(a)

(b)

Figure 3.1: Two-dimensional cuts through Gaussian pyramids generated for different
datasets: (a) PET scan; (b) CT scan

consecutive level is the next smaller image. With PET slices having resolutions of only
128 × 128 and the number of slices usually even less than 128, the images become so
small that further pyramid levels are not sensible. Example cuts through the volumetric
images generated at different pyramid levels are presented in figure 3.1.
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The transformation type determines the set of transformation functions from which the
search strategy may choose. It is defined by a family of functions with a parametrization
T and a search space that expresses any potential constraints on the values of the
parameters in T .

The choice of a transformation type is often a compromise between two conflicting
goals. A misalignment can only be corrected if the transformation type is able to ex-
press a mapping that undoes its effects. If complex distortions are present, a type with
many parameters is required to precisely model this mapping. However, each additional
parameter increases the computational cost of the registration process since the similar-
ity metric and search strategy must produce and process information for its adjustment
in each iteration.

Transformation types fall into two general categories. A global transformation is used
when correcting a misalignment that affects the entire registered image, such as a trans-
lation or rotation. The mapping from reference to registered coordinates is calculated
using the same transformation function and parameter values for each point. When
the distortion to be undone varies throughout the registered image, a local transforma-
tion is employed. Its parameters allow a mapping to be specified that accounts for the
distortion in one region of the image without affecting other regions. The influence of
each parameter is usually strongest in one location and decreases with distance. The
parameters relevant to the transformation may therefore be different for every point in
the reference image.

In this thesis, both kinds of transformations are used. First, a global transforma-
tion is applied that aligns the general body shapes in the two images. Next, a local
transformation is applied to correct small changes in the shapes of the patient’s internal
organs.

4.1. Global

A global transformation is given by a single equation that is valid for all points in the
reference image. When constructing this equation, it is often more intuitive to think
not of the transformation function itself but of its inverse. As defined in section 1.2.2,
the transformation T provides a mapping from the reference to the registered image
coordinate frame:

xv = T (xu) (4.1)

If it exists, the inverse transformation specifies a mapping in the reverse direction:

T−1 (xv) = xu (4.2)
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The advantage of considering the inverse transformation is that it directly describes
the modifications performed on the registered image. For example, if T−1 doubles the
value of (xu)x, then this corresponds to a stretching of the registered image in x direction
by a factor of two.

Another useful concept for the description of global transformations are homogenous
coordinates [FvDFH95]. Each coordinate vector is extended by a component that is to
be interpreted as a scaling factor. A three-dimensional point is expressed as:

x =


x
y
z
w

 ∧=

x/w
y/w
z/w

 (4.3)

Using homogenous coordinates, a wide range of transformations that combine, scale
and offset the coordinates of the original point can be written as simple matrix multi-
plications:

xv = MTxu (4.4)

If it exists, the inverse of such a transformation is naturally described by the inverse
of this matrix:

M−1
T xv = xu (4.5)

4.1.1. Rigid

The simplest global transformations are those treating the registered image as a rigid
object. The image may then only be translated and rotated as a whole. Optionally,
scaling by a uniform factor may be allowed as well. The inverse transformation that
translates an image by a vector t is given by the following matrix:

T (t) =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

 (4.6)

Inverse transformations that rotate the registered image about the x, y and z axes
can also be expressed as matrices. They rotate by angles α, β and γ, respectively, in
anticlockwise direction when looking toward the origin:

Rx (α) =


1 0 0 0
0 cosα − sinα 0
0 sinα cosα 0
0 0 0 1

 Ry (β) =


cosβ 0 sinβ 0

0 1 0 0
− sinβ 0 cosβ 0

0 0 0 1



Rz (γ) =


cos γ − sin γ 0 0
sin γ cos γ 0 0

0 0 1 0
0 0 0 1


(4.7)
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A more complex inverse transformation may be constructed by performing several of
these elementary operations in succession. As each operation is applied to the result
of the previous, their matrix representations must be arranged from right to left and
multiplied to obtain the final matrix.

According to Euler’s rotation theorem, the three rotations about the coordinate axes
together are able to express every rotation possible in three-dimensional space. The
pivot point of such a rotation is the origin. If a different pivot p is desired, the image
must be translated so that the designated pivot coincide with the origin, rotated, and
the translation undone:

Rx,y,z (p, α, β, γ) = T (p)Rx (γ)Ry (β)Rz (α)T (−p) (4.8)

The type of rigid transformation used in this thesis allows an arbitrary rotation about
the center of the image and a translation by a vector t. With s the size of the registered
image, the pivot therefore is 1

2s and the entire inverse transformation matrix is given by:

M−1
T = T (t)T

(
1
2s
)
Rx (α)Ry (β)Rz (γ)T

(
−1

2s
)

(4.9)

The matrix representation of the corresponding transformation T is easiest obtained
by inverting the matrices of the elementary operations and multiplying them in reverse
order:

MT = T−1
(
−1

2s
)
R−1

z (γ)R−1
y (β)R−1

x (α)T−1
(

1
2s
)
T−1 (t) (4.10)

For both translation and rotation, the inverse operation is achieved by negating the
arguments:

MT = T
(

1
2s
)
Rz (−γ)Ry (−β)Rx (−α)T

(
−1

2s
)
T (−t) (4.11)

With xu and xv expressed in homogenous coordinates, the family of rigid transforma-
tions used in this thesis is:

xv = T (xu) = MTxu =
[
T
(

1
2s
)
Rz (−γ)Ry (−β)Rx (−α)T

(
−1

2s
)
T (−t)

]
xu (4.12)

This family offers six parameters. α, β and γ specify the rotation, the three com-
ponents of t the translation of the registered image. An explicit expression for MT

can be obtained by inserting the definitions of the elementary operations as given by
equations (4.6) and (4.7) and performing the matrix multiplications:

(MT )11 =cosβ cos γ (4.13)
(MT )12 =cosα sin γ + sinα sinβ cos γ (4.14)
(MT )13 =sinα sin γ − cosα sinβ cos γ (4.15)

(MT )14 =cosα
[(

sz
2 + tz

)
sinβ cos γ +

(
− sy

2 − ty
)
sin γ

]
+
[(
− sy

2 − ty
)
sinβ cos γ −

(
sz
2 + tz

)
sin γ

]
sinα

+
(
−tx − sx

2

)
cosβ cos γ + sx

2

(4.16)

(MT )21 =− cosβ sin γ (4.17)
(MT )22 =cosα cos γ − sinα sinβ sin γ (4.18)
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(MT )23 =cosα sinβ sin γ + sinα cos γ (4.19)

(MT )24 =cosα
[(
− sy

2 − ty
)
cos γ −

(
sz
2 + tz

)
sinβ sin γ

]
+ sinα

[( sy

2 + ty
)
sinβ sin γ −

(
sz
2 + tz

)
cos γ

]
+
(
tx + sx

2

)
cosβ sin γ + sy

2

(4.20)

(MT )31 =sinβ (4.21)
(MT )32 =− sinα cosβ (4.22)
(MT )33 =cosα cosβ (4.23)

(MT )34 =
(
− sz

2 − tz
)
cosα cosβ +

( sy

2 + ty
)
sinα cosβ

+
(
−tx − sx

2

)
sinβ + sz

2

(4.24)

(MT )41 =0 (4.25)
(MT )42 =0 (4.26)
(MT )43 =0 (4.27)
(MT )44 =1 (4.28)

An important observation can be made about the last row of the matrix. Because it has
a constant value of (0, 0, 0, 1), none of the transformations specified by equation (4.12)
alter the last component of xu. If (xu)w is set to a constant value for every xu, all xv

will also have this value in (xv)w. The last component of all homogenous coordinate
representations is therefore set to xw = 1 in this thesis. This is an obvious choice since
it simplifies equation (4.3) so that no divisions or multiplications are necessary when
converting between plain Cartesian and homogenous coordinates:

x =


x
y
z
1

 ∧=

xy
z

 (4.29)

4.1.2. Intensity Derivative

As seen in section 2.6.2, to calculate the derivative of mutual information, terms of the
form d

dT v (T (xu)) must be evaluated. This is the derivative of the registered image
intensity at the point xv = T (xu) with respect to the transformation parameters T . It
can be decomposed using the chain rule:

d

dT
v (T (xu)) = grad v (T (xu))

d

dT
T (xu) (4.30)

The first factor is the gradient of the registered image intensity at the point xv. A fast
way of estimating it from the image data is given by forward differences [AS65]. It will
be seen that because the fourth component of all homogenous coordinate representations
is constant, the derivative of v with respect to it is never needed. The estimation of the
last component of the gradient is therefore omitted to accelerate calculations:

grad v (xv) ≈ (v (xv + e1)− v (xv) , v (xv + e2)− v (xv) , v (xv + e3)− v (xv) , 0) (4.31)
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The second factor in equation (4.30) is the derivative of the transformation function
with respect to each of its parameters. Depending on the transformation type, the
calculation of this derivative may be very complicated.

4.1.2.1. Indirect Calculation

For transformations that can be expressed as MTxu, the use of an approximation is
suggested in [IVA+96]. The derivative is calculated not with respect to the transforma-
tion parameters but with respect to the elements of the matrix. The total derivative
of v (T (xu)) can then be written as a matrix ∆MT of the same size as MT with each
element given by:

(∆MT )ij = (grad v (T (xu)))i (xu)j (4.32)

The entire derivative may be efficiently calculated as:

∆MT = (grad v (T (xu)))T ⊗ xT
u (4.33)

If ∆MT is used in place of d
dT v, the derivative of the mutual information obtained

from equation (2.46) is also expressed with respect to the elements of MT . Based on
this information, the stochastic gradient ascent cannot directly adjust the parameters of
the transformation. Instead, the transformation matrix MT is modified:

M̃T ←MT + λ∆MT (4.34)

Because the last row of MT is to remain constant, the corresponding elements of
∆MT must be zero. The easiest way to ensure this is by setting the last component of
the gradient used in equation (4.33) to zero, as is done in equation (4.31).

Directly changing the elements of the matrix may lead to a transformation that is
not valid for the chosen transformation type. For example, when only rotation and
translation are permitted, the matrix may additionally express a shearing operation.
An additional step is therefore required before registration may continue. Using a set of
constraints, a valid transformation must be determined that matches the one expressed
by M̃T as closely as possible. There is ambiguity in this calculation because twelve
elements of the matrix are independently modified but less degrees of freedom are de-
sired. Depending on how the constraints are enforced, different transformations may be
obtained.

One possibility is to use a singular value or polar decomposition [MH94]. This sepa-
rates the rotations expressed by M̃T from the translations and shears. The operations
allowed by the transformation type are then retained and those not desired removed,
producing a valid matrix MT . The approach of [Pau84] is investigated here instead. It
is suggested to first equate M̃T to the representation of MT given by equation (4.11):

M̃T = T
(

1
2s
)
Rz (−γ)Ry (−β)Rx (−α)T

(
−1

2s
)
T (−t) (4.35)

Next, both sides of the equation are successively premultiplied by the inverses of the
elementary operation matrices until elements that are either zero or constant appear on
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the right hand side (ignoring the last row, which trivially always is (0, 0, 0, 1)). Two
premultiplications are required for the matrix as given above:

Ry (γ)T
(
−1

2s
)
M̃T = Ry (−β)Rx (−α)T

(
−1

2s
)
T (−t) (4.36)

Elementwise comparison of the two sides yields:(
M̃T

)
11

cos γ −
(
M̃T

)
21

sin γ =cosβ (4.37)(
M̃T

)
12

cos γ −
(
M̃T

)
22

sin γ =sinα sinβ (4.38)(
M̃T

)
13

cos γ −
(
M̃T

)
23

sin γ =− cosα sinβ (4.39)((
M̃T

)
14
− sx

2

)
cos γ −

((
M̃T

)
24
− sy

2

)
sin γ =

(
sz
2 + tz

)
cosα sinβ

+
(
− sy

2 − ty
)
sinα sinβ

+
(
−tx − sx

2

)
cosβ

(4.40)

(
M̃T

)
21

cos γ +
(
M̃T

)
11

sin γ =0 (4.41)(
M̃T

)
22

cos γ +
(
M̃T

)
12

sin γ =cosα (4.42)(
M̃T

)
23

cos γ +
(
M̃T

)
13

sin γ =sinα (4.43)((
M̃T

)
24
− sy

2

)
cos γ +

((
M̃T

)
14
− sx

2

)
sin γ =

(
− sy

2 − ty
)
cosα

+
(
− sz

2 − tz
)
sinα

(4.44)

(
M̃T

)
31

=sinβ (4.45)(
M̃T

)
32

=− sinα cosβ (4.46)(
M̃T

)
33

=cosα cosβ (4.47)(
M̃T

)
34
− sz

2 =
(
− sz

2 − tz
)
cosα cosβ

+
( sy

2 + ty
)
sinα cosβ

+
(
−tx − sx

2

)
sinβ

(4.48)

An estimate of γ can now be obtained from equation (4.41):

tan γ =
sin γ
cos γ

≈ −

(
M̃T

)
21(

M̃T

)
11

(4.49)

Once γ is determined, all left hand sides of equations (4.37) to (4.48) can be calculated.
There are several ways to obtain values for the other parameters. β can be estimated
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by dividing equations (4.45) and (4.37), α from equations (4.43) and (4.42):

tanβ =
sinβ
cosβ

≈

(
M̃T

)
31(

M̃T

)
11

cos γ −
(
M̃T

)
21

sin γ
(4.50)

tanα =
sinα
cosα

≈

(
M̃T

)
23

cos γ +
(
M̃T

)
13

sin γ(
M̃T

)
22

cos γ +
(
M̃T

)
12

sin γ
(4.51)

Estimates for tx, ty and tz follow from equations (4.40), (4.44) and (4.48). While this
scheme is attractive for its computational efficiency, it has several shortcomings. The
first is that the estimates in equations (4.49), (4.50) and (4.51) can be undefined. In this
case, arbitrary values have to be substituted for the angles. A far more grave problem is
a lack of precision. Each estimated parameter is only guaranteed to satisfy the equations
it was derived from. When the parameter is subsequently inserted into other equations,
imprecisions arise from the fact that the left and right hand side may actually not be
equal. The errors increase in the cascade of calculations where the estimated value of γ
is used in the calculations of β and α and all three angles are required when estimating
the components of t. To obtain reliable values, a different approach is chosen in this
thesis.

4.1.2.2. Direct Calculation

The second factor in equation (4.30) is directly calculated for each parameter p of the
transformation. It can be rewritten as:

d

dp
T (xu) =

d

dp
MTxu =

(
d

dp
MT

)
xu (4.52)

The matrix MT,p := d
dpMT consists of the elements of MT , each differentiated by p.

If such a matrix is calculated for each of the six parameters and equation (4.52) inserted
into (4.30), the derivative of v (T (xu)) with respect each parameter p can be calculated
as:

d

dp
v (T (xu)) = grad v (T (xu))MT,pxu (4.53)

From the elements of MT given by equations (4.13) to (4.28), it follows that for
each parameter p, the last row of MT,p contains all zeros. Arithmetic operations can
therefore be saved if this row is omitted from the multiplication with the gradient. This
also means that the fourth component of the gradient is not required and does not need
to be calculated, as proposed in equation (4.31). Because the six matrices MTp are
straightforward to calculate, only one of them is given here as an example:

MT,tx =


0 0 0 − cosβ cos γ
0 0 0 cosβ sin γ
0 0 0 − sinβ
0 0 0 0

 (4.54)
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Since it is a priori known that most elements of the matrix will be zero, even more
calculations can be saved by omitting the multiplications and additions that involve such
elements.

4.1.3. Search Space

The search space specifies the range of values that should be considered for each of the
parameters in T . Mathematically, all six parameters may be set to any real number. In
practice, only certain values are sensible. The translation should not be made so large
that there is no overlap between the two images. Since rotation is periodic, each angle
can be confined to a range of 2π values.

However, in the experiments conducted for this thesis it was found that there is no
need to explicitly limit the parameter values. As will be seen in chapter 7, starting
from the rough estimate provided by aligning the centers of the two images or even a
larger artificial misalignment, the similarity metric and search strategy never produced
a misregistration by choosing unreasonable values for the parameters of the rigid trans-
formation.

4.1.4. Other Tranformation Types

Global transformations can be used to correct a wider range of misalignments that those
covered by the rigid transformation type used in this thesis. If the elements of MT are
allowed to be changed freely as long as the last component of xu is preserved, the family
of affine transformations is obtained. For three-dimensional images, twelve elements of
the matrix may be modified:

xv = T (xu) =


(MT )11 (MT )12 (MT )13 (MT )14
(MT )21 (MT )22 (MT )23 (MT )24
(MT )31 (MT )32 (MT )33 (MT )34

0 0 0 1

xu (4.55)

Affine transformations include rotation and translation, but also scaling, shearing,
reflection and orthogonal projection [FvDFH95]. They all have the property that three
points xu lying on a line in the reference image are mapped to three points xv that also
lie on a line in the registered image. If the condition that the last component of xu be
preserved is waived, all elements of the matrix may be set freely:

xv = T (xu) =


(MT )11 (MT )12 (MT )13 (MT )14
(MT )21 (MT )22 (MT )23 (MT )24
(MT )31 (MT )32 (MT )33 (MT )34
(MT )41 (MT )42 (MT )43 (MT )44

xu (4.56)

One important transformation that can be expressed this way is the perspective trans-
formation. It is used in multi-view registration when aligning two images taken from
different points of view.
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If an even more complex distortion is to be undone, a popular choice are transfor-
mations that calculate the components of xv as higher order polynomials of those of
xu [ZF03]. Such transformations are at the fuzzy border between global and local. Ar-
guably, by using a high enough order, an arbitrarily complex transformation can be
produced that is able to express any local adjustments required. However, with increas-
ing order of the polynomials not only the number of parameters to be optimized quickly
grows, but unwanted warping of the registered image may occur [Bro92]. Polynomials
of orders higher than two or there are therefore not generally encountered. Actual local
transformations are chosen instead.

4.2. Local

A local transformation is used to specify a mapping which varies throughout the image.
This allows deformations to be corrected that only affect certain image areas. Because
the transformation functions are usually far more complex than the simple matrix multi-
plications used in the previous sections, translation and scaling effects can be expressed
directly by the functions and there is no need to use homogenous coordinates. The
treatment of local transformations therefore assumes plain Cartesian coordinates.

4.2.1. Scattered Data Interpolation

Local transformations are often constructed around the concept of scattered data inter-
polation. An overview of such approaches is presented in [RM92]. The transformation
is parametrized by a series of control point or node pairs. In each of the n pairs, pi

is a position in the reference image that remains constant throughout the registration
process. qi is an associated parameter vector that specifies the transformation of this
node. Often, it is the registered image position that pi should be mapped to:

∀ 1 ≤ i ≤ n : T (pi) = qi (4.57)

Another possibility is that qi is the displacement that must be added to pi in order
to obtain the registered image position:

∀ 1 ≤ i ≤ n : T (pi) = pi + qi (4.58)

To extend the mapping to arbitrary points xu in the reference image, a function f
is used that interpolates between the values qi at the nodes pi. The transformation
functions for the two cases described above are:

xv = T (xu) = f (xu) with ∀ 1 ≤ i ≤ n : f (pi) = qi (4.59)
xv = T (xu) = xu + f (xu) with ∀ 1 ≤ i ≤ n : f (pi) = qi (4.60)

It is apparent that irrespectively of whether the qi are registered image positions or
displacements, the continuity and smoothness of the mapping are dependent only on
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those of f . C0 is always required so that there are no discontinuities in the transforma-
tion. To obtain a higher quality interpolation, C1 or even higher degrees of continuity
may be desired.

As noted in [RM92], the interpolation between the qi is performed independently
for each coordinate. In the case of 3D registration, f can therefore be split into three
functions fk : R3 → R, each of which interpolates between pairs (pi, (qi)k) and fulfills:

∀ 1 ≤ i ≤ n : fk (pi) = (qi)k (4.61)

The problem of interpolating between scalar values associated with arbitrary positions
pi ∈ Rd is known as scattered data interpolation and gives this class of local transfor-
mations its name. The problem also occurs in many other application areas such as the
natural sciences where the distribution of a physical quantity throughout an area is to
be estimated from a few discrete measurements [LWS97]. It has therefore been studied
extensively and many interpolation techniques have been proposed.

Inverse distance weighted interpolation is a very flexible approach mentioned briefly
in [Bro92] and described in more detail in [RM92]. The interpolation function is given
by a weighted sum of local interpolants:

fk (x) =
n∑

i=1

wi,k (x) fi,k (x) (4.62)

Each interpolant fi,k spreads the value (qi)k throughout the image while the weight
function wi,k limits its influence with growing distance from pi. The construction of an
interpolation technique based on this approach is made difficult by the wide range of
available weight functions, types of local interpolants and methods for determining their
parameters.

Another idea is to triangulate the reference image with the pi as the corners of the
generated triangles. For each point x, interpolation then only occurs between the three
values (qi)k associated with the corners of the triangle it falls into. This allows for great
computational efficiency but can quickly lead to the image folding over itself.

4.2.1.1. Radial Basis Functions

Another family of flexible interpolation techniques is based on the use of radial basis
functions. Given a vector x, the value of a radial basis function R depends only on the
length of that vector:

R (x) := R (‖x‖) (4.63)

An interpolation function can be constructed from two terms. The first is a weighted
sum of n radial basis functions, each centered at a node pi with its value depending on
the Euclidean distance between x and pi. The second term is a polynomial of degree
m, which can be expressed as a weighted sum of M functions φi forming a basis for all
polynomials up to degree m [FRS99]:

fk (x) =
n∑

i=1

αikR (‖x− pi‖) +
M∑
i=1

βikφi (x) (4.64)
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A total of n + M constraints are required to calculate the weights αki and βki for
the given coordinate k. The first n constraints are provided by equation (4.61) and
guarantee that fk actually is an interpolation function. M additional constraints are
obtained by imposing side conditions on the polynomials [FRS99]:

∀ 1 ≤ j ≤M :
n∑

i=1

αikφj (pi) = 0 (4.65)

The constraints can be expressed as a system of linear equations:(
C D
DT 0

)(
α
β

)
=
(
q
0

)
(4.66)

α, β and q are column vectors composed of the unknown weights αik, βik and the
values (qi)k, respectively. The elements of the n×n matrix C and the n×M matrix D
are given by:

Cij = R (‖pi − pj‖) (4.67)
Dij = φj (pi) (4.68)

The weights can be obtained by inverting the matrix:(
α
β

)
=
(

C D
DT 0

)−1(q
0

)
(4.69)

Although matrix inversion is a costly operation, it only needs to be executed once as
the nodes pi do not change throughout the registration process. When the parameters
in q are modified, new weights may be obtained quickly by performing the matrix-vector
multiplication. An overview of frequently used radial basis functions and the conditions
that must be satisfied for each to guarantee that the matrix will be invertible are provided
in [FRS99]. The functions are the thin-plate spline, multiquadric, inverse multiquadric
and Gaussian:

RTPS (r) =

{
r4−d ln r
r4−d

4− d ∈ 2N
otherwise

(4.70)

RM (r) =
(
r2 + c2

)µ
µ ∈ R+ (4.71)

RIM (r) =
(
r2 + c2

)−µ
µ ∈ R+ (4.72)

RG (r) = e−
r2

2σ2 (4.73)

Some of the weaknesses of these functions are described in [FRS99] and [RM92]. For
example, if the value of c is chosen incorrectly for multiquadrics and inverse multi-
quadrics, the interpolation will not be smooth or cause the registered image to fold over
itself.
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A very important shortcoming shared by all four functions is their global influence.
Thin-plate splines and multiquadrics increase with r, making the modeling of local de-
formations difficult. The other two functions decrease with r but never reach zero. The
polynomial component of equation (4.64) provides an additional global effect. How-
ever, it cannot be omitted for thin-plate splines and multiquadrics with µ > 1 if a valid
interpolation and the solvability of the system in equation (4.66) are to be guaranteed.

The global nature of these radial basis functions is problematic for two reasons. First,
if any of the parameters is changed, the effects of this change on the alignment quality
can only be assessed by recalculating the similarity metric for the whole image. Second,
for every point xu mapped into the registered image, the entire sums in equation (4.64)
need to be evaluated causing a computational cost of O (N +M) per point that increases
with the number of nodes. Additionally, except for the multiquadrics and inverse multi-
quadrics with appropriately chosen µ, each addend contains a transcendental function.

4.2.1.2. Radial Basis Functions with Compact Support

Many of these problems can be overcome by using suitable radial basis functions with
compact support. A popular choice are the ψd,l (r) functions introduced by Wendland
[Wen95]. They have several desirable properties:

Compact Support Compact support means that there exists a constant t for which
R (r) = 0 when r > t. This gives each radial basis function only local influence
within a radius of t. When evaluating the first sum in equation (4.64), functions
centered around nodes pi farther away from x than t may therefore be omitted
from the calculation. All Wendland functions allways have influence radius t = 1.

Positive Definiteness For x ∈ Rg, all Wendland functions ψd,l (x) = ψd,l (‖x‖) with
d ≥ g are positive definite. This means that the matrix in equation (4.66) is always
invertible and the polynomial component of equation (4.64) is not required. An
interpolation function f can therefore be constructed that consists solely of a sum
of weighted radial basis functions with local influence.

Polynomial Structure Wendland functions are simple polynomials which can quickly be
evaluated without the need to calculate transcendental functions.

Continuity For x ∈ Rd, each ψd,l (x) is C2l continuous. The choice of l permits a trade-
off between the smoothness of the interpolation and the complexity of the radial
basis functions to be made.

Definitions of ψd,l for all combinations of d and l may be found in [Wen95] and [FRS99].
Here, only the function chosen for this thesis is given. To obtain positive definiteness
for three-dimensional image positions, d = 3. Because continuity C0 is mathematically
sufficient and leads to the simplest functions, l = 0. The resulting Wendland function
is:

ψ3,0 (r) =

{
(1− r)2 0 ≤ r ≤ 1
0 r > 1

(4.74)
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As noted in [FRS99], the radius of influence may be changed by applying a scaling
factor to r. A radial basis function with all properties of the Wendland function above
but influence radius a is therefore given by:

Ra (r) =

{(
1− r

a

)2 0 ≤ r ≤ a
0 r > a

(4.75)

4.2.2. Transformation Function

The first step in constructing a transformation function based on Ra is to insert the
radial basis function into equation (4.64) to obtain an interpolation function. Since no
polynomial term is required, the second sum may be omitted:

fk (x) =
n∑

i=1

αikRa (‖x− pi‖) (4.76)

Before this result can be used in either of the transformation functions given by equa-
tions (4.59) or (4.60), the separation into individual coordinates introduced in equa-
tion (4.61) must be reversed. Because the interpolation functions for the three coordi-
nates differ only in the values of the weights αik, this is easily done:

f (x) =
n∑

i=1

αiRa (‖x− pi‖) with αi =

αi1

αi2

αi3

 (4.77)

The calculation of these weights is also identical for each coordinate. Due to the lack
of a polynomial term, equation (4.69) simplifies to:

α = C−1q (4.78)

To combine the weight calculations for all coordinates into one expression, n × 3
matrices A and Q consisting of the following elements are introduced:

Aik = αik (4.79)
Qik = (qi)k (4.80)

All weights are then given as:
A = C−1Q (4.81)

The n × n matrix C must be constructed from the positions of the nodes according
to equation (4.67) and inverted only once at the beginning of the registration process.
When the parameter values are later changed, new weights can be calculated quickly by
executing the matrix multiplication with an updated matrix Q.

The thus obtained scattered data interpolation technique is used in this thesis to in-
terpolate between displacements qi. This has the significant advantage that in an image
area far away from all control points, the transformation function in equation (4.60)
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reduces to the identity transform. Nodes therefore only need to be placed where ad-
justments are required. If the qi represented node positions in the registered image, the
transformation function of equation (4.59) would map such distant areas to the non-
sensical position of zero, making a dense arrangement of nodes throughout the entire
image necessary. By inserting equation (4.77) into (4.60), the following family of local
transformation functions is obtained:

Tl (xu) = xu +
n∑

i=1

αiRa (‖xu − pi‖) (4.82)

As explained in section 1.3.2 and at the beginning of this chapter, registration is
performed in two passes. First, the six parameters of a global transformation function
are optimized. Then, the mapping is refined by introducing a local transformation.
However, Tl has no global component that would allow it to incorporate the mapping
calculated in the first pass. The global and local transformation functions are therefore
combined to produce a function which can express both the global adjustments found
in the first pass and the necessary local modifications determined in the second pass.

The position of a point xu in reference image coordinates is first modified by Tl,
offsetting it according to the local transformation. The result is then mapped into the
registered image by applying the global transformation function from equation (4.12).
Because the global transformation requires homogenous coordinates, the result of Tl is
extended by a fourth component with the constant value of one:

xv = T (xu) = MT

xu +
n∑

i=1
αiRa (‖xu − pi‖)

1

 (4.83)

It should be noted that the six parameters that determine the matrix MT are only
adjusted during the first pass of the registration process. When the local transformation
is added, the search strategy is concerned only with the parameters of Tl. MT remains
constant.

4.2.3. Placement of Nodes

Before the family of transformation functions defined by equation (4.83) may be used
for image registration, the nodes pi must be distributed in the reference image. Their
positions should satisfy several goals. Because the local component of the transformation
function reduces to identity in areas without nearby nodes, they must be present in each
region where local deformations are expected. A single node only allows for very simple
adjustments so that to be able to undo complex misalignments, the regions of influence
of several nodes should overlap.

During registration, the similarity metric must provide information about the impact
of each parmeter on the current alignment. In a feature based metric, alignment quality
is only evaluated for distinct features. To obtain information for the adjustment of
every parameter vector qi, the node positions pi should therefore coincide with feature
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locations in the reference image. Since mutual information is an image based similarity
metric, no such restriction exists. Alignment quality is measured not only at the nodes
themselves but throughout the image.

Despite the freedom available, no node should be put in a region that contains mainly
a uniform background intensity and few significant data as this may lead to severe
misregistration. Because most intensity differences in such a region are only due to
noise, the optimal displacement found by the similarity metric and search strategy will
be based primarily on random noise. This random parametrization then has the potential
to corrupt the alignment of significant image data in the vicinity.

Good results may be obtained by manually placing the nodes [FRS99]. However, in
this thesis a fully automatic registration technique is desired. A method for automatically
distributing the nodes was therefore developed. A grid of 8× 8× 8 nodes is constructed
and placed over the reference image so that its center coincides with the center of the
image. The grid spacing d is identical in all dimensions and calculated such that the
nodes fully cover the longest side of the reference image. With s′ the size of the image,
d is given by:

d =
max {s′1, s′2, s′3}

8
(4.84)

The radius of influence of each node is r = 1.5d. This guarantees that at every point in
the grid, the influences of several nodes overlap. After the grid has been positioned, nodes
that are determined to be unnecessary are removed. First, all nodes that fall outside the
image are dropped. Because the grid forms a perfect cube but the tomographic dataset
may be a cuboid of arbitrary size, eight nodes may not be required to cover the entire
image in each dimension.

Next, the area surrounding each node pi is analyzed to determine whether it contains
enough significant data. This is illustrated in figure 4.1. The radial basis function
R1.5d centered around the node gives it an area of influence that is a sphere of radius
r = 1.5d. However, because the influence diminishes with the distance from pi, only a
smaller spherical region of radius d in which the radial basis function is deemed to have
substantial influence is considered in the analysis.

To ascertain the amount of significant data in this region, the intensity of the reference
image is evaluated at a number of points. In order to obtain reproducible results, the
points are arranged in a deterministic, regular pattern. They form a smaller three-
dimensional grid with a spacing of d

4 centered around the node and truncated where the
Euclidean distance from pi exceeds d. This leads to a total of 257 points around each
potential node.

A point is regarded as indicating significant data when its intensity exceeds a threshold
t1. The number of such points is counted and the node is kept only if this count is
above another threshold t2. The values used for these thresholds have been determined
empirically and are t1 = 7 and t2 = 85. With the image having integer intensities in
the range of [0, 255], this means that a node is only retained if at least one-third of the
points evaluated in its region of substantial influence have an intensity that is above a
background noise level.

55



4. Transformation Type

Figure 4.1: Two-dimensional cut through the grid of nodes: node (red); area of influence
(solid line); area of substantial influence (dashed line); evaluation points
(ticks); neighboring nodes (gray)

Although the technique is very simple, experiments have shown that it is able to
automatically produce good node arrangements for different types of tomographic scans.
Examples for PET and CT scans serving as reference images are provided in figure 4.2.
They show two-dimensional cuts through the images along the grid planes. The number
of nodes in each dimension, 8, is chosen arbitrarily and can be increased to provide more
local control.

4.2.4. Intensity Derivative

According to section 2.6.2, calculation of the mutual information derivative requires a
formula for the evaluation or estimation of d

dT v (T (xu)). To determine at a suitable
expression, the chain rule is applied first:

d

dT
v (T (xu)) = grad v (T (xu))

d

dT
T (xu) (4.85)

The gradient of v at xv = T (xu) may be estimated in the same way as was done in
equation (4.31) for the global transformation. As will be seen, the fourth component is
again not required:

grad v (xv) ≈ (v (xv + e1)− v (xv) , v (xv + e2)− v (xv) , v (xv + e3)− v (xv) , 0) (4.86)

An expression for the second factor in equation (4.85) is easiest derived for each
parameter (qi)k separately. It is first decomposed into its global and local components
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Figure 4.2: Automatically generated node arrangements for a CT scan (top row) and a
PET scan (bottom row)

using equations (4.82) and (4.83):

d

d (qi)k

T (xu) =
d

d (qi)k

MT

(
Tl (xu)

1

)
= MT

(
d

d(qi)k
Tl (xu)
0

)
(4.87)

The resulting column vector is denoted d. Because the interpolation between the qi

and thus the entire local transformation Tl is calculated independently for each coordi-
nate, the derivative with respect to (qi)k can be non-zero only for the kth coordinate
of Tl (xu). All components of d other than dk are therefore always zero and do not
contribute to the matrix-vector product:

d

d (qi)k

T (xu) =


(MT )1k dk

(MT )2k dk

(MT )3k dk

(MT )4k dk

 =


(MT )1k

(MT )2k

(MT )3k

(MT )4k

 dk (4.88)

With (MT )k denoting the kth column of MT , this may be written more compactly
as:

d

d (qi)k

T (xu) = (MT )k dk (4.89)

Using equation (4.82), dk expands into:

dk =
d

d (qi)k

(xu)k +
n∑

j=1

αjkRa (‖xu − pj‖)

 (4.90)
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=
n∑

j=1

(
d

d (qi)k

αjk

)
Ra (‖xu − pj‖) (4.91)

The derivative of αjk can be rewritten by inserting equation (4.81):

d

d (qi)k

αjk =
d

d (qi)k

(
C−1Q

)
jk

(4.92)

=
d

d (qi)k

n∑
h=1

(
C−1

)
jh
Qhk (4.93)

=
n∑

h=1

(
C−1

)
jh

d

d (qi)k

Qhk (4.94)

With the definition of Qhk from equation (4.80), this becomes:

d

d (qi)k

αjk =
n∑

h=1

(
C−1

)
jh

d

d (qi)k

(qh)k (4.95)

The derivative is one for h = i and zero in all other cases so that the sum simplifies
to a single term:

d

d (qi)k

αjk =
(
C−1

)
ji

(4.96)

The result of equation (4.96) inserted into (4.91) produces the following expression
for dk:

dk =
n∑

j=1

(
C−1

)
ji
Ra (‖xu − pj‖) (4.97)

The desired formula for the derivative of the entire transformation is obtained by
inserting dk into equation (4.89):

d

d (qi)k

T (xu) = (MT )k

n∑
j=1

(
C−1

)
ji
Ra (‖xu − pj‖) (4.98)

According to equation (4.85), d
d(qi)k

v (T (xu)) can now be calculated by multiplying the
estimate of the gradient from equation (4.86) with equation (4.98). Because according to
equations (4.25) to (4.27), the last component of (MT )k is always zero, its multiplication
with the fourth component of the gradient may be omitted. It is therefore not necessary
to estimate that part of the gradient, confirming the assumption made in equation (4.86).

It is apparent from equation (4.98) that the calculations required for each of the
three parameters in a parameter vector qi differ only in the column of MT used. By
multiplying with the entire matrix, the derivatives with respect to all components of qi

can be obtained together. The final expression obtained is:

d

dqi
v (T (xu)) = grad v (T (xu))MT

n∑
j=1

(
C−1

)
ji
Ra (‖xu − pj‖) (4.99)
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Figure 4.3: Neighboring grid points of node pi: pi (red); grid points offset by one grid
spacing in one coordinate (blue); grid points offset by one grid spacing in
two coordinates (green)

4.2.5. Optimizations

The nature of the transformation function and the arrangement of nodes allow for several
significant optimizations.

4.2.5.1. Matrix C−1 Generation

When constructing the matrix C according to equation (4.67), a radial basis function is
evaluated for all pairs (pi,pj). This process can be vastly accelerated. Because radial
basis functions with compact support and influence radius r = 1.5d are used, only node
pairs whose Euclidean distance is smaller than this radius need to be considered. For all
other pairs, it follows from equation (4.75) that the matrix elements are zero.

As the node arrangement is a subset of a regular grid, the nodes pj who fall into a
radius of r around pi can be quickly determined. The situation is illustrated in figure 4.3.
pi has a distance to itself of zero. Six neighboring grid points are offset from pi by one
grid spacing in one coordinate, leading to a distance of d. Twelve more grid points are
offset by one grid spacing in two coordinates, thus having a distance of

√
2d. All other

grid points are farther away than 1.5d. Relevant are thus only the nodes pj located at
one of the eighteen neighboring grid points. In an implementation, it needs to be taken
into account that the grid has finite size and some of the grid positions may not exist.

Because all relevant nodes are located at fixed distances from pi, the required values
of the radial basis functions can be precalculated:

cij =


R1.5d (0) pj = pi

R1.5d (d) pj offset from pi by one grid spacing in one coordinate
R1.5d

(√
2d
)

pj offset from pi by one grid spacing in two coordinates
0 otherwise

(4.100)
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The matrix can now efficiently be constructed. Its elements are initially all set to
zero. Then, for each pi only cii and up to eighteen cij are updated. Because C is sparse,
its inversion can also be optimized by using one of the efficient and numerically stable
techniques available for such matrices [KSSH02].

4.2.5.2. Local Evaluation of MI?

Mutual information, as an image based similarity metric, only provides a cumulative
assessment of the alignment quality for the entire image. When using a local trans-
formation, it is desirable to define a new metric MI? (qi) that evaluates the degree of
alignment achieved by a single parameter vector qi. Unfortunately, the radial basis func-
tion centered at each node pj is weighted with a factor αj calculated in equation (4.81)
as the weighted sum of all parameter vectors. The influence of each vector on the trans-
formation is therefore global and it is impossible to isolate the effects of qi.

However, the influence of every qi can be considered approximatively local. Because
by virtue of equation (4.60), the displacement at each node pi is precisely qi and the
interpolation function attempts to provide a smooth transition between these displace-
ments throughout the image, the influence of qi is strongest at pi and decreases with
distance while the influences of other qj increase. The quality of alignment achieved by
qi may therefore be estimated by calculating the mutual information for a small image
region centered around pi.

The region chosen in this thesis is the area of substantial influence introduced in
figure 4.1. It is defined as a sphere around pi with a radius of d. As will be seen in
chapter 7, this provides a metric that is largely representative of the alignment quality
produced by qi.

4.2.5.3. Local Evaluation of d
dqi
MI?

As it is also image based, the derivative of the mutual information with respect to a pa-
rameter vector qi expresses how changes to its components would affect the alignment
quality of the entire image. Because the influence of the parameter vector is approxima-
tively local, most of the samples used in the calculation are drawn from image areas on
which qi has almost no effect. To obtain an estimate of the sign and relative magnitude
of the mutual information derivative using fewer samples, it is therefore reasonable to
use only those located in a small image region centered around pi in which qi is deemed
to have significant influence on the transformation function.

The region used is again the area of substantial influence. This way, the calculated
value is d

dqi
MI? (qi), the derivative of the local mutual information introduced in the

previous section.

4.2.5.4. Calculation of T and d
dqi
T

When using equation (2.41) to estimate mutual information, the transformation function
T needs to be evaluated for each sampling point xu. To estimate the mutual information
derivative in equation (2.46), it is additionally necessary to calculate d

dqi
T . As seen in
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equations (4.83) and (4.99), the bulk of these calculations is spent evaluating a weighted
sum of radial basis functions with the weights denoted here wj as they have no influence
on the following considerations:

n∑
j=1

wjR1.5d (‖xu − pj‖) (4.101)

Because the radial basis functions have compact support, it is unnecessary to iterate
over all n of them. Instead, only those centered around nodes pj within a radius of
r = 1.5d from xu need to be considered. With the indices of these nodes stored in
N (xu), equation (4.101) can be rewritten as:∑

j∈N(xu)

wjR1.5d (‖xu − pj‖) (4.102)

The set of relevant nodes and the corresponding values of the radial basis functions
can be precalculated for each sampling point. Because the two samples encompass
NA + NB points and MI? and its derivative are evaluated separately for each node
pi, the total number of sampling points is (NA +NB)n. To reduce the amount of
precalculations required, the same pattern of sampling points x′u is used for each node.
The pattern consists of NA+NB points scattered randomly in a sphere of radius d around
an imaginary node at the origin. The actual sampling points xu for an evaluation at the
node pi are obtained by translating the pattern so that it is centered around this node:

xu = x′u + pi (4.103)

Precalculations are now only performed for the NA +NB points x′u. It is impossible to
directly determine the set of nodes N (xu) this way as the nodes are different depending
on which pi the pattern is centered around. The grid points at which such nodes may be
located also depend on pi. However, their positions are constant if they are expressed
relative to the grid point g (pi) of pi.

Due to this fact, a set of relevant grid point offsets G (x′u) can be precalculated for
each x′u. When the pattern is centered around a pi, the node indices N (xu) for each
xu can then be quickly found by adding each offset in G (x′u) to the grid point g (pi)
and determining whether a node is present at that location in the grid or not. In an
implementation, it needs to be taken into account that because of the finite size of the
grid, some of the grid points may not exist. The value of the radial basis function can
also be precalculated for each offset in G (x′u) as the distances between the grid points
and xu remain constant when the pattern is centred around different pi.

To quickly and efficiently determine G (x′u), the set is not calculated precisely. Instead,
an entire rectangular sub-grid is used that encompasses all points within a radius of 1.5d
from x′u and some number of additional points that are actually farther away. Such
spurious points do not corrupt the calculation because their radial basis functions are
zero for x′u so that they have no influence on the value of equation (4.102).

The size of the sub-grid is calculated independently for each dimension. The largest
grid is required when x′u falls in line with the grid points in this dimension, as illustrated
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(a) x′u coinciding with a grid point

(b) x′u located at arbitrary position between grid points

(c) x′u located midway between grid points

Figure 4.4: One-dimensional view of grid points relevant to x′u: x′u (tick); area of in-
fluence (circle segments); closest grid point (red); other relevant grid points
(blue); irrelevant grid points (gray)

in figure 4.4. As seen in cases (a) and (b), if x′u coincides with a grid point or lies at
an arbitrary position between two of them, three grid points centered around the one
closest to x′u fall within a radius of 1.5d and are relevant. In the corner case (c), x′u
lies midway between two grid points and only these two are close enough to be relevant.
However, because it is permissible to declare spurious points relevant, this case may be
treated in line with the others by choosing one of the two grid points as the closest one
and using the three points centered around it.

To be certain all relevant grid points are covered, it is thus sufficient to always use a
3×3×3 sub-grid centered around the grid point closest to x′u. Because G (x′u) is always
a sub-grid of the same shape, it does not actually need to be stored for each sampling
point. Instead, only the offset g (x′u) of the grid point closest to x′u is recorded and G is
reconstructed on the fly by adding or subtracting one from each of the coordinates.

The offset from the grid point the pattern is centered about to the point closest to
x′u is given directly by the coordinates of x′u. With Gaussian brackets [·] indicating the
rounding operation, the kth coordinate of the offset is:

gk

(
x′u
)

=
[
(x′u)k

d

]
(4.104)

In summary, what needs to be done while precalculating is to calculate g (x′u) and for
each of the 27 points in a sub-grid around it, the value of the radial basis function at
x′u. To evaluate T or its derivative d

dqi
T at a point xu = x′u + pi , G (x′u) is constructed

on the fly from g (x′u), translated by g (pi) and the nodes found at the resulting grid
positions used, along with the precalculated values of the radial basis functions.
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(a) (b) (c)

Figure 4.5: Topology of the registered image corrupted by a too large displacement: (a)
no displacements; (b) small displacement at center node, preserving topol-
ogy; (c) large displacement at center node, corrupting topology

4.2.6. Search Space

An important requirement expressed in section 1.2.2 is that the transformation function
be injective so that the registered image is not folded over itself. This preservation of
topology cannot be guaranteed for the local transformation function developed in this
chapter if the displacements qi at the nodes are made too large. An example is shown
in figure 4.5. Nine nodes are located at the intersections of the bold lines. The center
node is displaced to the right so far that the grid’s topology is corrupted.

The results of a mathematical analysis of the maximal permissible displacements are
presented in [FRS99]. Unfortunately, it is found there that the analysis is very com-
plicated for nodes with intersecting areas of influence. An evaluation is performed for
a single isolated node instead and it is suggested to use the results as references when
choosing the maximum displacement for a more complex situation.

The largest displacement preserving the topology of the registered image is found to
be 0.28r if the radial basis function is ψ3,2 with influence radius r and 0.34r if it is ψ3,1

of the same radius. From this data, a maximal allowable displacement of about 0.4r can
be extrapolated for the ψ3,0 function used in this thesis.

To be able to independently adjust the components of the qi, instead of a maximal
total displacement, a limit for the absolute value of each component is chosen. It is set
to 0.2r so that the total displacement at a node does not exceed

√
3× 0.22r ≈ 0.35r.

This provides a margin of 0.05r to compensate for the complex interactions of nodes
with intersecting areas of influence.

4.2.7. Other Transformation Types

Many alternative approaches to the one used in this thesis have also been proposed for
the construction of local transformation functions [ZF03]. Other types of radial basis
functions can be considered, for example B-splines and elastic body splines. Instead of
interpolating between the qi, it is possible to use a transformation function that only
approximates these values at the nodes pi. This may result in an overall smoother
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transformation that is able to preserve topology when an interpolation would fail to do
so.

Based on a completely different idea are elastic transformations. The registered image
is treated like a rubber sheet. The parameters adjusted during registration are forces
acting on this sheet, deforming it. They can be counteracted by stiffness constraints
which limit the deformation. This allows for the interesting possibility of declaring
certain image areas, such as those where bones have been identified, as completely rigid
and not prone to deformation. The downsides of such transformations are their costly
evaluation and the influence on a large image area that each parameter has.
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An overview of the proposed registration technique has been provided in section 1.3.2 and
detailed descriptions of its main components in the three chapters that followed. Now,
an actual registration system based on these ideas is presented. The implementation
focuses on efficiency, attempting to provide the fastest registration possible. The system
is modular so that if faster replacements are developed for some of its components, they
can be plugged in to speed up the calculations. This will be done in the next chapter
when the most time-consuming aspects of the registration are ported to a GPU, or
graphics processing unit.

The entire system is split into two applications. The first performs preprocessing steps
and stores the images in a format that is easier to use in the context of registration. The
second application is concerned with the registration process itself. Such a division is
convenient in an academic system as the results of the preprocessing can be reused when
changes are made to the registration routines. In a clinical setting, it would be more
sensible to combine the two applications providing a one-step solution to the registration
of tomographic images.

All code is written in C++ and relies on the utility classes provided by Qt 41. This
toolkit provides many useful routines for areas such as GUI development and file access
as well as general enhancements to the C++ language. The applications are highly
portable and have been developed and tested on both Linux and FreeBSD.

5.1. Preprocessing

The preprocessing application performs several duties. First, the two datasets are loaded
from the files generated by tomographic scanners and their intensities brought into a
range that is more suitable to efficient calculations. Next, a human operator is given
the opportunity of manual intervention by specifying regions of interest. As explained
in section 1.3.1, if only small areas within the volumetric images are relevant to the
diagnosis, registration can be accelerated by limiting it to these regions.

The reasoning in this case is different. It was feared that the similarity metric and
local transformation may be unable to cope with extraneous information such the beds
on which the patient was positioned for the two scans being visible in the images. The
region of interest specification is therefore optimized to selecting the human shape and
clipping away these beds. However, as seen in section 4.2.3, a system for the automatic
placement of nodes was developed that reliably positions nodes only where organic tissue

1http://www.trolltech.com/products/qt/
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Figure 5.1: Screenshot of the preprocessing application

is present, ignoring the beds. A manual specification of the regions of interest, while still
possible, is therefore not required.

As a final step, the two images are saved in a single file that serves as the input of the
registration application. A simple file format was developed for this purpose that can
efficiently be read and written and stores only the information that is relevant to the
registration process. Figure 5.1 shows a screenshot of the preprocessing application.

5.1.1. Loading: The DICOM Standard

The methods and protocols used for exchanging image data between medical devices are
specified in the DICOM standard. Part 5 [Nat06] describes the file format to be used
when storing medical images. Regardless of modality and manufacturer, tomographic
scanners are expected to generate DICOM conformant files. The standard is extensive,
allowing for a variety of data types, compression techniques and storage formats. Addi-
tionally, most devices are not entirely conformant and generate files that do not strictly
adhere to the specifications. The development of DICOM reading routines is therefore
a tedious task best done once and abstracted into a library.

The library used in this thesis is GDCM2. It is written in C++ and provides a simple
class structure for accessing the image intensities and metadata stored in a DICOM file.
While the extraction of compressed images is handled transparently, other differences
between individual datasets are exposed. Most notably, some scans are stored in a single
file while with others, each slice needs to be loaded separately. Also, different bit depths

2http://www.creatis.insa-lyon.fr/Public/Gdcm/
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can be used to express the image intensities. Based on the images available during the
development of the registration system, the preprocessing application assumes that slices
are stored in separate files and handles several different bit depths. Because it is not
apparent from a set of DICOM files whether the first or the last contains the superior
slice, a check box is provided to reverse the order in which the slices are arranged.

In a CT scan, intensities are expressed in Hounsfield units where −1000 corresponds
to the density of air and 1000 to that of bone. For other modalities, different scales and
units are used. In a multi-modal registration system that can handle different types of
data, a uniform scale is desirable. The highest and lowest intensities are therefore found
in each image and the intensities normalized to an integer scale of [0, 255].

Besides the raw image slices, DICOM files contain metadata. Relevant to registration
is the spacing between the voxels in millimeters. Using this information, it is possible
to automatically match the scales of the reference and registered image. As noted in
section 1.3.2, this is not done by resizing one of the images but by implicitly scaling
the coordinates on each access to a voxel intensity. The voxel spacing is therefore only
extracted to be forwarded to the registration application.

5.1.2. Regions of Interest

Following the explanation provided in section 5.1, the region of interest specification is
optimized for isolating the patient’s body and clipping away the beds in the two images.
A shape that is very suitable for this purpose is the ellipse. The operator may specify an
elliptical region that is to be retained for each slice. Data outside the ellipses is ignored.

For registration to operate only on the specified regions of interest, all voxels not
covered by the ellipses must be removed. However, this leads to images with highly
irregular shapes and makes registration inefficient as nodes and sampling points must
be distributed within such complex bounds. Instead, a bounding box is constructed for
each image that covers the areas of all ellipses. Within this box, voxels that fall outside
the ellipses are set to a background intensity of zero. All image data within the box
is then used for registration. This results in an image that all extraneous information
replaced with a neutral background intensity while remaining cuboid like the original
dataset. The process is illustrated in figure 5.2.

For each slice, the region of interest can be conveniently specified using a mouse.
Dragging moves or resizes the ellipse, depending on whether the left or right button is
held down. Clicking the middle mouse button removes the ellipse. If no region of interest
is set for a slice, an ellipse is used whose size and position are linearly interpolated
between the closest slices for which they have been manually specified. Only when no
region of interest is specified for any slice, the clipping process is omitted and all voxels
are used in the registration.

5.1.3. Saving: The UNDO File Format

After two tomographic datasets have been loaded, normalized and optionally clipped
to smaller regions of interest, they are saved in a file that serves as the input of the
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Regions of interest for two CT slices: (a), (d): original slices; (b), (e): slices
with specified regions of interest (red) and common bounding box (green);
(c), (f): slices after filling with background intensity and clipping to the size
of the bounding box

registration application. The UNDO file format developed for this purpose is very simple.
It consists of a header whose structure is shown in table 5.1, followed first by the voxel
intensities of the reference and then those of the registered image.

The intensities are stored uncompressed as one byte per voxel from left to right, top
to bottom, front to back. To simplify the code, the 32 bit integer values in the header
are saved in the byte order of the CPU, making UNDO files generated on little and big
endian machines incompatible.

5.2. Registration

As its name implies, the primary purpose of the registration application is to register
the tomographic datasets stored in an UNDO file. Additionally, the program is able to
conduct a number of predefined experiments. After a file has been loaded, the two images
are roughly aligned by making their centers coincide and presented to the operator. The
reference image is shown in blue, the registered in red. This is illustrated in figure 5.3,
which is a screenshot of the user interface with an example UNDO file loaded.

The visualization is provided only to verify that the correct datasets have been selected
and preprocessing results are satisfactory. No interaction with the images is possible or
required. For registration, the only manual input available is the choice between a purely
CPU based implementation and one of the GPU accelerated versions which are the topic
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Count Data Type Fixed Contents Description

4 char ‘U’ ‘N’ ‘D’ ‘O’ File signature

1 uint32 3 File format version

3 uint32 Number of voxels in reference image per
dimension

3 float Spacing between voxels in reference im-
age in millimeters per dimension

3 uint32 Number of voxels in registered image per
dimension

3 float Spacing between voxels in registered im-
age in millimeters per dimension

Table 5.1: UNDO file header

Figure 5.3: Screenshot of the registration application
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of the next chapter. The entire registration process is fully automatic.
Although programmatically possible, the results are not presented in the application

window. Instead, they are stored in a series of images, each of which shows a reference
slice and the corresponding cut through the registered image. This solution was chosen
because it allows for a more flexible evaluation of the final alignment. Using the tools
of a general purpose image viewer, it is easily possible to zoom in on the images or view
multiple slices side by side.

The additional experiments available are not meant to be run by end users. They
are only meaningful in an analysis of the registration process such as that conducted
in chapter 7. To isolate the effects of each registration pass, it is possible to leave out
either the global or the local one. When aligning an image with itself, an artificial
misalignment can be introduced to prevent the images from being perfectly registered
right away. Finally, it is possible to not align the images at all but plot the mutual
information or its derivatives over different values of the transformation parameters.

An important observation underlying the design of the application is that depending on
whether registration or one of the other experiments is chosen, either mutual information
or its derivatives are required, never both. The calculation of these quantities is therefore
strictly split so that when one is needed, the other is not needlessly provided.

5.2.1. Class Structure

The main classes of the registration application and their interactions are illustrated in
figure 5.4. The notation used in the code and this diagram differs in one aspect from
that found in the previous chapters of this thesis. Instead of global and local, the two
transformation types are referred to as rigid and non-rigid.

The main loop of the iterative registration process as well as methods controlling the
additional experiments are located in the Registration class. The number of calcula-
tions performed here is minimal with the bulk of the computation effort factored out
into other classes.

Raw image intensities to be used in the calculations are administered by the Data
class. It is responsible for loading UNDO files and generating image pyramids of different
resolutions.

Following with the observation made at the end of the previous section, separate
classes are used to calculate the mutual information and its derivatives. They are further
subdivided into those using a rigid or non-rigid transformation. Each of the four resulting
classes, RigidMI, RigidMIDerivative, NonRigidMI and NonRigidMIDerivative is only
an abstract stub. By exchanging their implementations, different calculation methods
can be plugged in without affecting the remainder of the code. These key classes are
highlighted by a yellow background in the UML diagram.

In the implementations presented in this chapter, the calculation effort is split be-
tween two types of classes. The first, derived from the abstract Transformation, are
TransformationRigid and TransformationNonRigid. They provide access to image
intensities and registered image gradients by encapsulating the transformation func-
tions. The second type of classes use this input to calculate the mutual information and

70



5.2. Registration

RigidMI
{abstract}

RigidMICPU

RigidMIDerivativeCPU

RigidMIDerivative
{abstract}

NonRigidMI
{abstract}

NonRigidMICPU

NonRigidMIDerivativeCPU

NonRigidMIDerivative
{abstract}

Registration

WorkerMainWindowDataWidget

Data

TransformationNonRigid

TransformationRigid

Transformation
{abstract}

Figure 5.4: Class structure of the registration application

its derivatives. They are RigidMICPU, RigidMIDerivativeCPU, NonRigidMICPU and
NonRigidMIDerivativeCPU.

The images are displayed on the screen by the DataWidget. Because this class accesses
the intensities via an implementation of Transformation, any alignment of the images
can be shown. This provision is used to visualize the initial rough alignment.

All widgets are embedded in an instance of the MainWindow class, which implements
the application window and handles user interaction. It also starts the registration
process or one of the experiments when requested by the user. The Worker class is
intended to provide a thread that runs in parallel to the GUI so that calculations can be
performed without interrupting screen updates. Unfortunately, it has been found that
multithreading cannot be used with GPU accelerated code, most likely due to a bug in
the X11 server. The Worker therefore only forwards requests to the Registration class
and calculations do block the user interface.

All classes communicate with each other using the light-weight message passing mech-
anism of slots and signals provided by Qt. For example, when a new UNDO file is
loaded, the Data class emits a signal and all other classes to whose operation this change
is relevant are notified by automatically generated calls to their slot methods.
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Although care has been taken to follow proper object-oriented programming tech-
niques and any class may be instantiated multiple times, in practice this is only ever
done for the transformations. Of all other classes, only a single object is constructed.

5.2.2. Implementation of Classes

The implementation of the registration system closely follows the methods developed
in the previous chapters of this thesis. For the classes that perform large amounts of
calculations, much effort has been put into computational efficiency and speed.

5.2.2.1. Registration

The Registration class contains the main loop of the iterative registration technique.
It can be decomposed into the rigid and non-rigid passes, the first of which is shown in
algorithm 5.1.

Algorithm 5.1 Main loop of registration process: Rigid pass
Trigid ← rough initial alignment
λr = r1
λt = r2
for l = 4 to 0 do

for s = 1 to s1 do
dr = d

d(α,β,γ)T MI?

dt = d
dtMI?

(α, β, γ)T ← (α, β, γ)T + λrdr

t← t + λtdt

λr = m1λr

λt = m2λt

end for
end for

A rough initial alignment is obtained by making the centers of the two images coincide.
Then, stochastic gradient ascent according to section 3.2 is performed. Following the
multiresolution approach described in section 3.3, registration is conducted for pyramid
levels of increasing size, beginning with the smallest images at l = 4 and finishing with
the original datasets at l = 0.

Separate step sizes are used for rotation and translation so that a bias of the mutual
information toward either of the two transformations can be counterbalanced. The initial
rates are given by the constants r1 and r2. As explained in section 3.2, to guarantee that
registration completes after a finite amount of time, the step sizes must be continually
decreased. This is done by multiplying them with factors 0 < m1,m2 < 1 in each
iteration.

Instead of looping until the similarity is deemed satisfactory, as proposed by algo-
rithm 1.1, a fixed number of iterations are performed. The reasons for this are twofold.
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First, because mutual information is not an absolute measure, it is difficult to judge
when it has reached a close to maximal value. Second, as the step sizes are decreased in
each iteration, they at some point become so small that registration is effectively halted.
The number of iterations s1 is therefore chosen so that the loop ends when λt and λr

are satisfactorily small.
Good values for the constants r1, r2, m1, m2 and s1 need to be determined empirically.

A set of values will be proposed in chapter 7.
The second pass is non-rigid registration. It is shown in algorithm 5.2.

Algorithm 5.2 Main loop of registration process: Non-rigid pass
Tnon−rigid ← Trigid

for all qi do
qi ← 0

end for
λ← r3
for s = 1 to s2 do

for i = 0 to n− 1 do
di ← d

dqi
MI? (qi)

end for
for i = 0 to n− 1 do

qi ← qi + λdi

for k = 0 to 2 do
if (qi)k < −0.2r then

(qi)k = −0.2r
else if (qi)k > 0.2r then

(qi)k = 0.2r
end if

end for
end for
λ = m3λ

end for

First, an initial non-rigid transformation identical to the rigid transformation found in
the first pass is constructed. Rotation and translation are retained and the displacements
at all nodes set to zero. Then, stochastic gradient descent is performed again to adjust
their values. The number of iterations is s2, the initial step size r3 and the factor by
which it is decreased each time, 0 < m3 < 1. Possible values for these constants may be
found in chapter 7.

In every iteration, the derivatives of the local mutual information as defined in sec-
tion 4.2.5.3 are calculated at all nodes and the displacements adjusted accordingly. Each
component (qi)k of a displacement vector is then clipped to the interval [−0.2r, 0.2r],
respecting the search space set forth in section 4.2.6.

When conducting an experiment that does not align the two images, the transforma-
tion parameters are set to a series of predefined values, the mutual information or its
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derivatives are calculated for each setting and output into a text file. This file can then
be used to generate plots such as those in chapter 7.

5.2.2.2. Data

The Data class provides access to raw image intensities. Its two duties are loading
UNDO files and generating image pyramids. When loading a file, a number of checks
are performed to verify that it adheres to the specifications of section 5.1.3, the header
values are sane and all voxel intensities are present. The spacings in millimeters between
the voxels of the two images read from the header are stored in the vectors y0 and y′0.

As a result of clipping, the two datasets can be cuboids of arbitrary dimensions. To
make them easier to handle, they are embedded in three-dimensional arrays whose sizes
in all dimensions are powers of two. Because only the cuboids contain relevant data, they
are referred to as the regions of interest while the entire arrays are known as volumes.
Each region of interest is centered in the smallest volume possible. Any remaining voxels
are set to the background intensity of zero. The offset in voxels of the region of interest
within the volume is o0 for the reference and o′0 for the registered image.

Image pyramids of five levels each are then constructed for both datasets using the
method described in section 3.3. The entire volumes are smoothed and resized. Because
they have power of two dimensions, the data at every level again has sizes that are
powers of two, avoiding the need to consider the case where an image dimension is odd
and cannot precisely be halved. As at subsequent levels, each voxel represents a larger
chunk of the original image, the offsets of the regions of interest decrease while the
spacings between the voxels increase. For level l of the pyramid, they are recursively
given as:

ol =
1
2
ol−1 o′l =

1
2
ol−1 (5.1)

yl = 2yl−1 y′l = 2y′l−1 (5.2)

5.2.2.3. TransformationRigid

This class implements the rigid transformation function. Given xu ∈ R3, it is able to
return u (xu) and v (T (xu)), the intensities of the reference and registered images at
that point. Additionally, the derivative of the transformation function may be queried.

The transformation is calculated directly as defined by equation (4.12), with xu ex-
tended to homogenous coordinates by adding a fourth component (xu)w = 1:

xv = MTxu (5.3)

To simplify the implementation, the helper classes HMatrix and HVector have been
developed. The first represents a 4 × 4 matrix while the second is a four component
homogenous coordinate vector. The matrix class features a multiplication operator that
performs the required matrix-vector multiplication. According to equation (4.52), the
derivative of the transformation function with respect to each parameter p can be ex-
pressed as a 4× 4 matrix MT,p. The derivative matrices for the six parameters are also
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stored and returned as HMatrix objects. Whenever any of the parameters is changed,
the transformation matrix and its six derivatives are updated.

When the intensity of the reference image at a point xu is to be looked up, the implicit
conversion from millimeters to voxel coordinates introduced in section 1.3.2 must be
performed. If level l of the image pyramids is currently being used, the calculations for
the kth component of xu are:(

x′′u
)
k

=
(xu)k

(yl)k

+ (ol)k − 0.5 (5.4)

The result is a vector x′′u of zero based indices into the volume of voxel intensities
generated by the Data class. The division by the voxel spacing (yl)k rescales the coor-
dinates so that they are expressed in voxels, not millimeters. A translation by (ol)k is
necessary because the reference image is offset by ol in the intensity volume. The final
translation of −0.5 is required as each array position corresponds to a voxel center while
the origin of the reference coordinate system is the corner of a voxel.

If the three components of x′′u are integers, they may directly be used as indices into
the reference volume. Indices not within the array bounds indicate that xu lies outside
the image and an intensity of zero should be assumed. When any of the components
has a fractional part, xu points to a location between voxel centers. In this case, the
intensity must be estimated based on those of surrounding voxels. The method used is
trilinear interpolation.

To simplify the description, a few notations are introduced. x is x′′u with each compo-
nent rounded down to the nearest integer:

xk =
⌊(

x′′u
)
k

⌋
(5.5)

Weighting factors τk are given by the fractional parts of x′′u:

τ = x′′u − x (5.6)

With u′′ the volume of reference image intensities, the estimated intensity at the
desired position x′′u then is:

(1− τ1) (1− τ2) (1− τ3)u′′ [x]
+ (1− τ1) (1− τ2) τ3u′′ [x + e3]
+ (1− τ1) τ2 (1− τ3)u′′ [x + e2]
+ (1− τ1) τ2τ3u′′ [x + e2 + e3]
+τ1 (1− τ2) (1− τ3)u′′ [x + e1]
+τ1 (1− τ2) τ3u′′ [x + e1 + e3]
+τ1τ2 (1− τ3)u′′ [x + e1 + e2]
+τ1τ2τ3u′′ [x + e1 + e2 + e3]

(5.7)

Equation (5.7) calculates the intensity as the weighted sum of those of the eight
surrounding voxels. The weights are the distances between the centers of these voxels
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and x′′u in each coordinate. If any of the eight voxels lies outside the array, an intensity
of zero should be substituted for it again.

When the intensity of the registered image is to be determined, xu is first transformed
into xv by executing the matrix multiplication in equation (5.3). Then, operations
analogous to those used for the reference image are performed with y′l, o′l and the
reference volume v′′ substituted for yl, o′l and u′′.

Additional methods are provided which allow parts of the coordinate transformation
to be omitted or altered. If a reference image intensity is being looked up and the
indices x′′u are already known, a conversion from xu is not necessary. When estimating
the registered image gradient, it is useful to be able to add an arbitrary offset to xv after
the transformation has been applied but before any other operations have taken place.

5.2.2.4. RigidMIDerivativeCPU

The purpose of this class is to estimate the derivatives of mutual information with
respect to the parameters of the rigid transformation function. The transformation
itself is represented by an instance of TransformationRigid. What remains to be done
is to evaluate equation (2.46) for each parameter p:

d

dp
MI? (X,Y ) =

1
NB

∑
xi∈SB

∑
xj∈SA

[
WY (vi, vj)

1
σ2

Y

−WX,Y (wi,wj)
1

σ2
Y,Y

]

(vi − vj)
(
d

dp
vi −

d

dp
vj

) (5.8)

The definitions used in this expression are provided by equations (2.43) and (2.44):

vi =v (T (xi)) wi =
(

u (xi)
v (T (xi))

)
(5.9)

WY (vi, vj) =
fN

0,σ2
Y

(vi − vj)∑
xk∈SA

fN
0,σ2

Y

(vi − vk)
WX,Y (wi,wj) =

fN0,Σ
(wi −wj)∑

xk∈SA

fN0,Σ
(wi −wk)

(5.10)

At the beginning of the registration process, sampling points xi are generated and
stored in SA and SB. The reference image intensities at these points can be retrieved
without the need for trilinear interpolation if each xi coincides with the center of a voxel.
This is accomplished by first choosing random array positions x′′i in the reference volume
region of interest and only then converting their coordinates to millimeters, performing
the inverse of the transformation in equation (5.4). Each ui = u (xi) may then be looked
up directly in the reference volume as ui = u′′ [x′′i ].

The key to efficiently evaluating equation (5.8) is precalculation. Whenever a value
can be reused, it should be calculated only once and stored for later reference. Because
the sampling points do not change over the course of registration, the ui need only to
be determined once at the beginning of the registration process. Precalculation is also
possible for the values of fN

0,σ2
Y

and fN0,Σ
. The values of the first function are stored in
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an array G1 and those of the second, in G2. Each evaluation of a density function can
then be replaced by an array look-up:

fN
0,σ2

Y

(x) = G1 [|x|] (5.11)

fN0,Σ
(x) = G2 [|x1| , |x2|] (5.12)

Absolute values may be used because according to their definitions in equations (2.33)
and (2.34), Gaussian density functions with a mean of zero are symmetrical. The values
for which these functions are evaluated in equation (5.10) are the differences of image
intensities. Since only integer intensities in the range [0, 255] are used, |x| is also an
integer in [0, 255] while x is a pair of integers from [0, 255]× [0, 255]. The array G1 thus
has 256 elements while G2 has 2562.

After these precalculations have been performed, the mutual information derivatives
can repeatedly be evaluated for different alignments. The first step in such an evaluation
is to obtain all required values from the TransformationRigid class. For every sampling
point xi in SA or SB, the registered image intensity vi and its derivatives d

dpvi with respect
to all transformation parameters p are needed. While the vi are directly provided by the
transformation class, the derivatives need to be calculated using equation (4.53):

d

dp
v (T (xi)) = grad v (T (xi))MT,pxi (5.13)

The six matrices MT,p can be retrieved from the transformation class. To estimate
the gradient, equation (4.31) is employed. With xv = T (xi), it is given as:

grad v (xv) ≈ (v (xv + e1)− v (xv) , v (xv + e2)− v (xv) , v (xv + e3)− v (xv) , 0) (5.14)

Since v (xv) = v (T (xi)) = vi, only three additional intensities are required for each
xi. They are also obtained from the TransformationRigid class using the convenience
method that allows an offset ek to be added after xi has been transformed into xv.

Next, the weighting factors WY and WX,Y are calculated for all pairs of points
(xi,xj) ∈ SB × SA according to equation (5.10). Because the factors for each xi share
a common denominator, it only needs to be evaluated once for all of them. Due to the
limited precision of a computer, it is possible for the denominator to become zero. This
occurs when the values of the Gaussian density function summed are all so small that
they get aliased to this value. The weighting factors in this case are set to zero so that
the affected pairs of points effectively drop out of the calculation and do not corrupt the
result.

Equation (5.8) can now be efficiently evaluated by executing the nested summation
and using the precalculated values of vi, wi = (ui, vi)

T , d
dpvi, WY and WX,Y . The

calculation is performed for all six parameters in parallel, determining the part of the
addend that does not depend of p once and multiplying it with

(
d
dpvi − d

dpvj

)
for each

parameter.
The class as implemented is aware of all events that may invalidate precalculated

values and intiates new precalculations whenever required. For example, when the image
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pyramid level is changed, new sampling points xi must be chosen and the reference image
intensities ui looked up again. If new variances are set for the Gaussian density functions,
the arrays G1 and G2 need to be recalculated.

5.2.2.5. RigidMICPU

This class estimates the mutual information for the alignment of the two images rep-
resented by an instance of TransformationRigid. It is not actually needed during
registration but only when plotting mutual information over different settings of the
transformation parameters. A description of its efficient implementation is provided
here only for completeness. According to equation (2.41), mutual information may be
estimated as:

MI? (X,Y ) =

− 1
NB

∑
xi∈SB

log
1
NA

∑
xj∈SA

fN
0,σ2

X

(u (xi)− u (xj))

− 1
NB

∑
xi∈SB

log
1
NA

∑
xj∈SA

fN
0,σ2

Y

(v (T (xi))− v (T (xj)))

+
1
NB

∑
xi∈SB

log
1
NA

∑
xj∈SA

fN0,Σ

((
u (xi)

v (T (xi))

)
−
(

u (xj)
v (T (xj))

))
(5.15)

Sampling points xi and corresponding reference volume indices x′′i are determined
in the same way as in section 5.2.2.4. Also, the same precalculations are used for the
reference image intensities u (xi) and the values of the Gaussian density functions.

When calculating the mutual information for a new alignment, the only values that
need to be obtained from the TransformationRigid class are the registered image in-
tensities v (T (xi)) for all points xi in SA or SB. The mutual information may then be
determined by evaluating the three rows on the right hand side of equation (5.15). They
correspond to H [X], H [Y ] and H [X,Y ], the entropies of the two images and their joint
entropy.

Because all intensities are integers in the range [0, 255], u and v can take on only
256 distinct values so that when evaluating H [X] or H [Y ], only 2562 = 65536 different
addends are possible. Instead of iterating over all pairs (xi,xj) ∈ SB×SA, it is therefore
sufficient to count how many times each intensity occurs in the samples, iterate over the
65536 intensity combinations and multiply each addend with the number of times this
intensity combination occurs.

With NA and NB the sample sizes, the complexity of the calculation is reduced from
O (NANB) to O (NA +NB) as every sample needs to be traversed only once to count
the intensities. However, a nested sum with a constant number of 65536 addends still
needs to be evaluated so that this approach is only more efficient if NANB >> 65536.
As will be seen in chapter 7, this actually is the case for tomographic images.

For the joint entropyH [X,Y ], no such acceleration is possible. The number of possible
addends is 2564 so that it is far more efficient to directly evaluate the nested sum as
given in equation (5.15).
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There are two more important points to be considered. First, the values of the inner
sums in all three rows may get arbitrarily close to zero. This is an artifact of the small
random samples used that occurs when xi ∈ SB has an intensity whose probability, when
estimated using sample SA, is almost zero. The logarithm in such a case approaches
negative infinity so that a single rogue sample could lead to a mutual information of ∞
or −∞. Due to the aliasing described in the previous section, it is even possible that
the value of an inner sum becomes precisely zero, for which the logarithm cannot be
evaluated. To avoid these problems, if the value of any inner sum is very small (the
threshold used in the code is 10−9), the logarithm is not directly evaluated but the
definition log 0 = 0 from section 2.6 is used instead.

The second important point is the observation thatH [X], the reference image entropy,
does not change over the course of the registration. It can therefore be completely pre-
calculated so that for each new alignment, only H [Y ] and H [X,Y ] must be determined.
As was the case with RigidMIDerivativeCPU, this class is also aware of all events that
could invalidate precalculated values and initiates new precalculations when required.

5.2.2.6. TransformationNonRigid

The TransformationNonRigid class implements the non-rigid transformation function
of equation (4.83):

xv = MT

xu +
n∑

j=1
αjRa (‖xu − pj‖)

1

 (5.16)

As direct evaluation of this function is prohibitively expensive, the optimizations pro-
posed in section 4.2.5 are employed. According to sections 4.2.5.2 and 4.2.5.3, sampling is
performed locally for every node pi. In section 4.2.5.4, it is suggested that the same pat-
tern of sampling points x′u be used for each such node. The TransformationNonRigid
class stores this pattern as well as the node positions and handles the entire sampling
process. Methods are provided which with a single call return the reference image inten-
sities, registered image intensities and gradients or transformation function derivatives
for all sampling points x′u in the pattern centered around all nodes pi.

Before sampling may commence, the nodes need to be distributed. This is done as
described in section 4.2.3. A regular grid of up to 8×8×8 nodes is placed over the image,
for each node the reference image intensity is evaluated at 257 points in the vicinity and
the node kept only if enough of these intensities are above a background noise level.
The grid is expressed as a three-dimensional array GN where for each grid point, the
node number or −1 is stored if no node is present. To simplify further calculations,
the array is padded with three additional grid points before and after the actual grid
in each dimension, all of which lie outside the image and are assigned the value −1.
Another array NG stores the corresponding grid point for each node. The position in
the reference image at which the grid begins is recorded in the variable S.

Next, the matrix C is constructed using the efficient method of section 4.2.5.1. First,
the required values of the radial basis functions are precalculated and all matrix elements
set to zero. Then, an iteration over the n nodes is performed. For each node pi, its
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position in the grid is looked up in NG and the nodes present at the nineteen relevant
surrounding grid points are obtained from GN . Whenever a node pj is found at one of
these points, the matrix element for the node pair (pi,pj) is set to the appropriate value
of the radial basis function. Because GN is padded with extra grid points at all sides,
the surrounding points are guaranteed to exist for every node pi and GN may directly
be accessed without any further checks.

To invert C, a method from the LinAlg3 package is used. It is not optimized for sparse
matrices and as such, does not achieve optimal computational performance. However,
because the inversion needs to be performed only once and at a maximum size of 83×83,
the matrix is relatively small, this is deemed acceptable. After the inversion, the elements
of C−1 are stored in an array W .

How the transformation function may efficiently be evaluated for the generated node
arrangement was shown in section 4.2.5.4. For each x′u, the offset used to locate the
relevant 3× 3× 3 sub-grid and the values of the radial basis functions for nodes located
at these grid points are precalculated. The only deviation from the method proposed
earlier is that the offset used points to a corner of the sub-grid, not its center. The
offsets are stored in an array F , the radial basis functions values in R.

The matrix MT represents the rigid component of the transformation and remains
constant throughout the registration process. Its elements are precalculated from the
six parameters that affect the rigid transformation using equations (4.13) to (4.28). The
weights αi are not constant and must be recalculated whenever the displacements qi are
changed. With the elements of C−1 stored in the array W , this may quickly be done by
evaluating equation (4.81):

A = C−1Q (5.17)

The elements of Q are set as specified in equation (4.80) but additionally negated,
so that Qik = − (qi)k. This is done to give the displacement parameters more intuitive
directions. For example, a (qi)1 = 10 results in a local translation of the registered
image at node pi by 10 millimeters to the right, not to the left as it otherwise would.

After all precalculations have been completed, efficient sampling is possible. Regard-
less of which quantity is to be sampled, an iteration over all nodes pi and all sam-
pling points x′u is performed. The resulting sampling positions are obtained from equa-
tion (4.103):

xu = x′u + pi (5.18)

The positions of the nodes are actually calculated on the fly from the starting point of
the grid S and their grid locations stored in the array NG. If reference image intensities
u (xu) are desired, they are looked up at the points xu in the reference volume. The
implicit conversion to voxel coordinates and trilinear interpolation are implemented in
the same way as described in section 5.2.2.3 for the TransformationRigid class.

To calculate registered image intensities v (T (xu)) = v (xv), each xu must first be
transformed into the corresponding xv by evaluating the transformation function of equa-
tion (5.16). Using the precalculated values and the method described in section 4.2.5.4,
this is achieved by a series of array look-ups and simple arithmetic operations.

3http://okmij.org/ftp/packages.html
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First, a corner of the relevant sub-grid is located as NG [pi] + F [x′u]. Then, the sub-
grid is traversed in the array GN and whenever a node pj is found, αj is multiplied with
the precalculated radial basis function value in R and added to xu. The resulting point
is extended to homogenous coordinates and the matrix-vector multiplication executed,
yielding xv. Because GN is padded with extra grid points at all sides, all 27 relevant
positions are guaranteed to exist for each xu, allowing the array to be accessed without
any further checks.

The registered image intensity at xv is looked up using the same implicit conversion
and trilinear interpolation as in section 5.2.2.3. If the registered image gradient is also
needed, it is estimated using equation (5.14):

grad v (xv) ≈ (v (xv + e1)− v (xv) , v (xv + e2)− v (xv) , v (xv + e3)− v (xv) , 0) (5.19)

This is most efficiently done together with the calculation of v (xv) as the transfor-
mation from xu to xv needs to be performed only once. The TransformationNonRigid
class provides two separate methods, one of which samples only the registered image
intensities and the other both the intensities and the gradients, depending on what is
required in subsequent calculations.

The final quantities for which a sampling method is made available are the derivatives
of the transformation function with respect to the displacements qi. The definition from
equation (4.99) is followed with additional negations applied due to the directions of the
displacements being inverted:

d

dqi
T (xu) = MT

n∑
j=1

−
(
C−1

)
ji
Ra (‖xu − pj‖) (5.20)

The same methods as those used to accelerate the calculation of the transformation
function are applied to its derivatives. For each combination of a node pi and a sampling
point x′u, the derivative is initially set to zero, xu is determined and the 27 relevant grid
points are traversed in GN . Whenever a node pj is found,

(
C−1

)
ji

is multiplied with
the precalculated radial basis function value from R and subtracted from the derivative.
The multiplication with the matrix MT is omitted. This is based on the observation
that the matrix is constant for all sampling points. Instead of returning 4×4 derivatives
for each point, it is more efficient to calculate only the scalar factor and perform the
multiplication on the fly when it is required.

5.2.2.7. NonRigidMIDerivativeCPU

This class estimates the derivatives of mutual information with respect to the parameter
vectors qi of the non-rigid transformation function. As proposed in section 4.2.5.3,
the derivatives are calculated locally using the the same pattern of sampling points x′u
centered around each node pi. The transformation is represented by an instance of
TransformationNonRigid. At the beginning of the second registration pass, a random
pattern of points x′u is generated for the samples SA and SB and forwarded to the
transformation class. According to section 4.2.5.3, the points should be scattered in a
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sphere of radius d, the spacing of the grid. To simplify the code, a radius of one is used
instead and the coordinates are rescaled after they have been forwarded.

Values that do not change over the course of registration are precalculated. The
number of nodes n and the rigid transformation matrix MT are retrieved from the
TransformationNonRigid object. Also queried are the reference image intensities and
transformation function derivatives at the sampling points for all nodes pi. Finally,
the required values of the Gaussian density functions are calculated and stored into the
arrays G1 and G2.

After these precalculations, the derivatives may repeatedly be evaluated for different
alignments. First, the registered image intensities and gradients are retrieved for all
sampling points at all nodes. Then, the derivative with respect to each qi is calculated
from the samples drawn locally around pi using the same steps as those described in
section 5.2.2.4 for RigidMIDerivativeCPU. The only difference is that the d

dpvi required
by equation (5.8) are obtained by evaluating the negated equation (4.99):

d

dqi
v (T (xu)) = grad v (T (xu))MT

n∑
j=1

−
(
C−1

)
ji
Ra (‖xu − pj‖) (5.21)

The gradient has been sampled and the other values precalculated so that only the
multiplications need to be performed. Because the fourth component of the gradient is
zero, only its first three components and a 3 × 3 sub-matrix of MT are used. As this
equation expresses the derivative with respect to the entire vector qi, the derivatives for
all of its components are obtained together.

5.2.2.8. NonRigidMICPU

The purpose of this class is to calculate the local mutual information at each node pi for
the alignment of the two images given by an instance of TransformationNonRigid. Its
implementation closely follows that of the RigidMICPU class described in section 5.2.2.5.
There are only two significant differences. The first is that the sampling points x′u
are randomly scattered in a sphere in the same way as in section 5.2.2.7. The other
difference is that the entire precalculation and calculation process is repeated for each
node pi using the local samples obtained from the transformation class.
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6. GPU Acceleration

Described in this chapter is a technique by which the computational efficiency of the
registration system can be taken beyond what is possible even with the most highly
optimized implementation requiring the least number of operations. The calculations
are moved from the CPU to a GPU, or graphics processing unit. This is the chip at the
heart of every modern graphics card. With the demand for ever more realistic graphics,
the performance and versatility of GPUs have steadily increased to the point where for
some calculations, they can far outperform much more expensive CPUs. However, as
GPUs are designed with graphics in mind, the paradigms and programming models they
employ greatly differ from those of traditional CPUs. The algorithms of the registration
system therefore need to be adapted before they can benefit from the speed of a GPU.

This chapter covers three topic areas. First, the relevant components of a GPU are
presented and the elements that can be reprogrammed introduced. Next, the use of a
graphics card for calculations other than the generation of moving images is explained.
Finally, these principles are applied to the registration system by describing GPU based
implementations of the four classes highlighted in figure 5.4.

6.1. GPU Programming

The two main APIs for controlling graphics processing units are Microsoft’s Direct3D
[Mic06] and the vendor independent OpenGL [SA04]. Because it is cross-platform,
OpenGL 2.0 is used in this thesis. A strength of this API is that it allows independent
extensions to be developed. Each vendor can propose a new extension by implementing
it in their hardware and drivers. If a proposal is popular and other manufacturers start
supporting it, the extension is eventually made official.

An acronym prefixed to its name indicates the status of an extension. Initially, a
reference to the original developer is used, such as ATI, NV or SGI. When multiple vendors
agree on a proposal, its name begins with EXT. If the extension gets approved by the
OpenGL Architecture Review Board, the prefix is changed to ARB. Even when it has the
blessing of the ARB, an extension still is not part of the core API and is not guaranteed
to be supported by all GPUs on all platforms. In this thesis, the GLEW1 library is used
to check for the presence of the required extensions. As the development of an alternative
code path would have been very time consuming, GPU based registration is aborted and
an error message produced should any of the expected extensions be missing. The code
has been written and tested using two different GPUs made by NVIDIA and should
work with all recent cards based on chips by that manufacturer.

1http://glew.sourceforge.net/
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Figure 6.1: Simplified OpenGL rendering pipeline

6.1.1. Rendering Pipeline

All processing on a GPU occurs as part of the rendering pipeline. In OpenGL, the
pipeline is modeled as a finite state machine. A simplified view of its structure is pre-
sented in figure 6.1. Commands are issued as C function calls and may alter the state
of the pipeline or pass primitives through it.

Each primitive is described by a series of vertices and associated properties. At the
first stage of the pipeline, the vertices are processed. The operations performed include
perspective transformation, lighting and clipping to the visible area. The second stage is
rasterization, where for each pixel covered by the primitive, a fragment is generated. At
the next stage, the color of each fragment is determined from values interpolated between
the vertices. The interpolated value can directly be the color, a set of coordinates used
to look it up in a texture map or both with the color obtained as a mixture of different
sources. Finally, the fragments are blended with the contents of the framebuffer. This
may be a window on the screen or an off-screen buffer that will be displayed later.

While the operations to be performed at each stage may be selected and their param-
eters adjusted using the appropriate commands, the choices are limited. Only functions
explicitly listed in the OpenGL specification or a supported extension are available.
More flexibility is offered by a programmable GPU. Here, the fixed functionality at
some stages of the pipeline can be disabled and replaced by arbitrary programs, known
as shaders. The two types of shaders and their positions in the rendering pipeline are
shown in figure 6.2.

Despite a large amount of freedom in how vertex and fragment shaders are written,
their roles in the pipeline are fixed. The first type of shader is called for each vertex.
It is expected to calculate the final position in the frame buffer as well as any lighting
effects and the associated texture coordinates. The fragment shader is executed for every
fragment. Its duty is to determine a color from the values interpolated between the
vertices by the rasterizer. Before the development of shaders is described in more detail,
the other elements of the rendering pipeline relevant to their operation are addressed in
the next two sections.
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Figure 6.2: Simplified programmable OpenGL rendering pipeline

6.1.2. Texture Maps

The fundamental data structures used by the rendering pipeline are texture maps.
OpenGL offers 1D, 2D and 3D textures which correspond to one-, two- or three-dimensio-
nal arrays in the memory of the graphics card. The texture elements, known as texels,
can be encoded in a variety of formats. Each format is defined by the number of com-
ponents per texel, ranging from one to four, and their data types. A single value is
sufficient when the texture expresses only depth, luminosity or transparency. To record
colors, three components are used and a fourth is added if an alpha transparency channel
is desired. Two values per texel are uncommon but may for example describe luminosity
and transparency in a grayscale texture map.

Several formats exist in which the components are allocated unequal numbers of bits.
In other formats, the same data type is used for each component. Commonly used
options are a byte or a floating point number. Besides IEEE 754 single precision [IEE85],
a half precision type is available. It is inspired by the IEEE standard but instead of 32,
uses only 16 bits to record a number with 10 mantissa and 5 exponent bits. Floating
point textures are not actually part of the OpenGL standard. They are made available
by several competing extensions, each of which allows different combinations of texture
dimensionality, number of components per texel and data type. To gain access to a wide
selection of texture types, the extensions proposed by ATI, NVIDIA and the ARB are
all used in the code written for this thesis.

As texture maps are defined in the context of graphics, the addressing of their elements
differs greatly from that used for traditional arrays, as illustrated in figure 6.3 (a) and
(b). In each dimension, the coordinates at the two edges of a texture are 0 and 1 with
the texels in between addressed by floating point numbers in that range. If there are n
texels, the center of the first has the coordinate 1

2n and each subsequent texel is reached
by adding 1

n . For example, if n = 4, the elements of the texture are found at 0.125,
0.375, 0.625 and 0.875.

To overcome the awkwardness of this addressing scheme, the Rect texture format is
provided. It defines a two-dimensional texture map where the coordinates at one corner
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Figure 6.3: Addressing of elements in: (a) array; (b) OpenGL 1D / 2D / 3D texture;
(c) OpenGL Rect texture

are (0, 0) and those at the opposing, (n,m), with n × m the size of the texture. As
illustrated in figure 6.3 (c), the coordinates of a texel are still not identical to those of
the corresponding array element in 6.3 (a). While the increment from one texel to the
next is the same as in an array, the address of the first texel in each coordinate is 0.5
and not 0.

All textures in OpenGL 2.0 may have arbitrary integer dimensions. The only limits
are the capabilities of the hardware, 4096 texels per coordinate for current GPUs, and
the amount of available memory. It is warned, however, that performance may suffer if
the extents are not powers of two. Only texture maps with power of two dimensions are
therefore used in this thesis.

In contrast to an array, it is not an error to address a position in a texture map that
lies outside of its bounds. What happens in such a case depends on the wrap mode. The
modes relevant to this thesis are:

Repeat The texture map is treated as if it repeated infinitely in all directions. Coordi-
nates wrap around whenever they reach an edge of the texture.

Clamp to Border Coordinates are clamped to a limited range. When a texel is ad-
dressed that lies outside the texture, constant background values are returned
instead. These are set beforehand using the appropriate OpenGL commands.

It is also possible to specify coordinates that fall between texel centers. Again, different
modes for handling such cases are available. Only two are relevant to the code written
for this thesis:
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Nearest The values stored at the closest texel center, or background values if no such
texel exists, are used.

Linear Values are interpolated between those recorded at the centers of surrounding
texels. Depending on the dimensionality of the texture, two, four or eight texels
are weighted. The interpolation is linear in each coordinate and for the three-
dimensional case, corresponds directly to equation (5.7). This mode is not available
for floating point textures where only nearest may be used.

One more aspect should be noted. The values of texture components are usually
rescaled to a range of [0, 1] when accessed by a shader. The only exception are floating
point textures whose values are a returned directly as stored, allowing them to cover the
entire range of floating point numbers.

6.1.3. Framebuffer Objects and Multiple Render Targets

This section introduces two concepts which are very valuable when working with shaders.
As shown in figure 6.1, the framebuffer is at the end of the rendering pipeline. Values
may be written to it but cannot be read back. This limitation can be overcome by
using the ARB draw buffers extension. It allows framebuffer objects to be constructed
in which a texture map serves as the backing store of the framebuffer. All values written
to the framebuffer get recorded in the texture currently bound to it. After the binding
has broken, the texture may be accessed in subsequent executions of a fragment shader.
This feedback loop is indicated by the dashed arrow in figure 6.2. A texture may never
simultaneously be used as both input and output as this leads to undefined results.

Only 2D and Rect textures may be bound to framebuffer objects. The framebuffer
dimensions, number of components and their data types are given by those of the backing
texture. Unfortunately, no authoritative list exists of the texture formats which may be
used with framebuffer objects. It depends on the particular GPU and driver combination
whether a format is supported or not. As the development of alternative code paths
would have been very time consuming, the code written for this thesis assumes that
several predefined formats can be used. These were chosen after tests showed them to
be available on a wide range of NVIDIA GPUs and Linux driver revisions.

Each framebuffer object offers up to 16 attachment points to which textures may
be bound. When rendering into different textures, it is fastest to attach them all to
the same framebuffer object and switch only between attachment points. However, the
limitation exists that all textures attached to a framebuffer object must have identical
type, dimensions and format.

As noted earlier, a texture may have only up to four components. If a shader calcu-
lates more than four values per fragment, they cannot all be stored in the same texel.
This problem is solved by using multiple render targets. Instead of a single framebuffer,
potentially backed by a single texture, multiple buffers can be active at the same time.
They may be ordinary OpenGL framebuffers or multiple attachment points of a frame-
buffer object. Because of the limitation noted above, multiple render targets backed by
textures always share the same type, dimensions and format.
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6.1.4. Shaders

Several extensions have been developed by different vendors that introduce shaders into
the OpenGL rendering pipeline. Early proposals were very limited. Shaders had to be
written in assembly language, could contain only as few as 16 instructions and were un-
able to perform branching or looping. Later revisions relaxed some of those restrictions
but did not make programming any easier or provide compatibility between manufactur-
ers. The first standard to address these issues was Cg [NVI06]. Developed by NVIDIA in
cooperation with Microsoft, this is a high level language with a C-like syntax. The capa-
bilities of the underlying hardware are abstracted into a range of profiles. Every shader
is portable between all GPUs that support the profile it is written against. A compiler
that produces GPU assembly code is provided as part of the Cg runtime environment.

Instead of adopting Cg, the Architecture Review Board chose a competing proposal by
3Dlabs, GLSL [KBR04]. First provided by means of an extension, it is now part of the
OpenGL 2.0 specification. GLSL is also inspired by C, both in its syntax and the steps
required to turn source code into an executable. The GLSL compiler is embedded in
the OpenGL driver so that each manufacturer can provide a version that generates code
optimized for their GPUs. After compilation, shader objects are linked into a program.
It may contain both vertex and a fragment shaders or just one of these types. When
a program is later activated, the precompiled shaders are loaded into the appropriate
pipeline stages.

In the spirit of OpenGL, the GLSL language supports extensions. New commands
and data types unique to their hardware can be added by each manufacturer. When no
proprietary extensions are used, GLSL is largely a write once, run everywhere language.
If a shader is too complex to be executed by the GPU, drivers are encouraged to resort
to a software path, running the shader code on the host CPU. This leads to a large
performance hit but provides a high degree of shader portability. Unfortunately, no
method is provided to unambiguously determine whether a shader will run in hard- or
software.

6.1.4.1. Fragment Shaders

Fragment shaders are addressed first because they are the only type used in this thesis.
An example introducing several features of the GLSL language is shown in listing 6.1.
The strong similarity to C code is apparent. The entry point is the beginning of the
main() method in line 6. It gets executed for every fragment generated by the rasterizer.
As the method has no parameters, the only inputs available are global variables. They
fall into two general categories by being either uniform or varying.

The value of a uniform variable, such as those defined in lines 1 and 2, is set to a
constant value for the entire primitive using OpenGL commands. A varying variable
can take on a different value for every fragment. The values are explicitly set only at the
vertices and interpolated by the rasterizer for the the individual fragments. This kind of
variable is the only way in which a vertex shader may pass information to the fragment
shader. If no vertex shader is active, only a set of default varying variables is available
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Listing 6.1 Example fragment shader
1 uniform sampler2DRect data1;
2 uniform sampler2DRect data2;
3 uniform vec2 offset;
4
5 void main() {
6 vec2 coordinates = gl_TexCoord[0].xy + offset;
7 vec2 values = vec2(texture2DRect(data1, coordinates).r,
8 texture2DRect(data2, coordinates).r);
9 gl_FragData[0].r = sin(values.r);

10 gl_FragData[1].r = values.g;
11 }

whose values are set using OpenGL commands. The most prominent example are the
texture coordinates, accessed as gl TexCoord in line 6. The coordinates are expressed as
an array because more than one set of coordinates may be required by complex shaders.

When the shader has completed its calculations, the resulting values must be sent
to the framebuffer. This is done by writing to the variable gl FragColor. If multiple
render targets are being used, the array gl FragData is written to instead, as shown in
lines 9 and 10. Each element corresponds to a framebuffer so that different values may
be sent to all of them. If gl FragColor is used when multiple render targets are active,
the same value is stored into all framebuffers.

Besides data types analogous to those found in other programming languages such
as bool, int and float as well as arrays and structures of these, three types unique
to GLSL are defined. The first two are vecn and matn, defining a column vector of n
components and an n× n matrix, respectively, with n ∈ {2, 3, 4}. The base type of the
matrix and vector elements is float. Vectors of booleans and integers are also available
as bvecn and ivecn. The third data type are samplers. They are used to access texture
maps, as exemplified in lines 7 and 8. For each texture type, a corresponding sampler
type is available. When a texture is to be accessed by a shader, it is bound to one of
the GPU’s texturing units using the appropriate OpenGL commands and the sampler
variable is set to the number of this unit. How many texturing units are available differs
between GPUs.

Vector elements are accessed by appending a period and the names of up to four com-
ponents, as seen in lines 6 to 10. Three synonymous naming schemes for the components
exist. They are {r, g, b, a}, {x, y, z, w} and {s, t, p, q}. The first names are meant to be
used when referring to colors, the second for points and the third for texture coordinates.
However, as they are synonymous, the schemes may be exchanged freely. Components
may be accessed in a different than their original order and the same component may
appear multiple times, such as coordinates.yxx. The resulting data type is a vector
with the same base type as the original or a scalar of the base type if only one compo-
nent is specified. As seen in lines 9 and 10, it is also possible to choose a subset of the
components on the left hand side of an assignment. Matrix elements may be selected by
treating the matrix as an array. If only one array index is provided, a column is chosen.

Other than the selection of a subset of a vector or matrix, no type casting is possible.
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Type conversions are performed by constructors, as shown in line 7. Here, a vec2
is generated from two floats. For every vector and matrix type, a large number of
constructors are defined which allow it to be built from various combinations of scalars,
vectors and matrices that do not exceed its size. The constructor notation is also used
when converting from one scalar data type to another.

Because vectors and matrices are basic data types, arithmetic operations may directly
be performed on them, such as m * v expressing a matrix-vector multiplication. Most
of the other features of the GLSL language directly correspond to those found in C.
Local variables may be defined (lines 6 and 7), functions called (line 9) and defined
(line 5). C keywords and syntax are used for selection (if, else), iteration (for, do,
while), jumping (return, break, continue), comparison, arithmetic operations and
assignment. Also, a subset of the C preprocessor directives is available.

An additional keyword is discard. When it is called, execution of the shader is
aborted and no changes are made to the framebuffer for the current fragment. Also
an addition are preprocessor directives which may be used to declare what extensions
are required or desired and to conditionally compile sections of code depending on the
available extensions. Within this syntactic framework, a range of built-in variables and
functions are defined. The variables, varying or uniform, provide information about
the current state of the rendering pipeline. Built-in functions perform operations such
as vector normalization, trigonometric function evaluation and texture access. Notably
absent are data types and functions for manipulating strings or pointers.

6.1.4.2. Vertex Shaders

The language features provided for vertex and fragment shaders are nearly identical. The
main difference is that in a vertex shader, uniform and attribute variables are used
as inputs while varying variables are written to. The attribute quantifier indicates
a variable whose value is set separately for each vertex using the appropriate OpenGL
commands. Other differences include the absence of the discard keyword, the lack of
some of the built-in functions and no automatic calculation of the level of detail when
accessing texture maps. As neither the level of detail nor vertex shaders as a whole
are used in this thesis, they are not described here in any more detail. Because no
vertex shader is loaded, the fixed functionality of the OpenGL pipeline is retained at the
relevant stage. Texture coordinates are passed through as set by OpenGL commands
while vertex positions are calculated by performing a perspective transformation whose
parameters may be adjusted using the appropriate commands.

6.2. GPGPU Programming

OpenGL and the shader languages that lend it additional flexibility have been developed
with the generation of real-time graphics in mind. GPGPU, for general purpose GPU
programming, is the idea of using these tools to perform other types of calculations.
GPUs with support for vertex and fragment shaders have entered the mainstream market
only a few years ago. Considerable interest in their use for GPGPU applications has
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developed even more recently, when the chips gained the ability to execute complex
shaders and began to outperform traditional CPUs for some types of calculations. While
the best practices for optimizing performance are still in flow and may change with every
new GPU or driver revision, the fundamental paradigms have stabilized.

6.2.1. Paradigms

As described in section 6.1.1, when a primitive is rendered, the rasterizer generates a
fragment for every framebuffer pixel covered by it. The fragment shader is the executed
for each fragment and the calculated values recorded in the framebuffer. GPGPU equates
the rendering of a primitive to a calculation pass, the textures read and written to arrays
and the shader to a computation kernel [Fer04]. Values stored in textures or calculated by
the shader are interpreted not as colors, luminosities or transparencies but as whatever
is required in the context of the particular application.

Rendering of a primitive allows a kernel to be applied to an array of input values
and the results to be stored in an output array. The output is captured by means of a
framebuffer object, as described in section 6.1.3. OpenGL executes the shader exactly
once for every pixel in the framebuffer covered by the primitive. To gain easy control over
how many values are calculated and for which array locations, an orthogonal mapping
is used at the vertex operations stage of the rendering pipeline.

With the texture backing the framebuffer having n × m elements, two options are
popular. The first is to define a coordinate system in which (0, 0) corresponds to one
and (n,m) to the opposing corner of the framebuffer. A rectangular slab of size n×m is
then rendered to execute the shader for every element of the output texture. A smaller
slab may be used to calculate values only for some of its elements. The other option is a
coordinate system in which the corners of the framebuffer are at (0, 0) and (1, 1). This
allows a slab to be specified that covers the desired fraction of the framebuffer without
knowing its size in texels. Both techniques are equivalent and may be interchanged.

Input values are read by the shader from two sources. One are the global variables
introduced in section 6.1.4.1 and the other, textures. The flexibility of variables in
passing data to the shader is very limited. If a variable is varying, its value can only
be explicitly set at the four vertices. For a uniform variable, just a single setting per
primitive is allowed. Variables are therefore only used to express constants and texture
coordinates. The actual input data is stored in texture maps. A very simple case is the
use of a single texture with the same dimensions as the one backing the framebuffer.
This leads to a 1 : 1 relationship where each output texel is calculated based on the
values of the corresponding input texel.

Many GPGPU shaders use much more complex arrangements. Not one but multiple
input textures are employed with different sets of coordinates pointing to the locations
to be queried in each. Texture coordinates may also be calculated within the shader
based on the values read from other texture maps. The maximal nesting depth of such
dependent texture look-ups depends on the particular GPU. A shader is able not only to
read from but also to write to more than one texture map. As explained in section 6.1.3,
this is achieved by using multiple render targets and allows a shader to output more
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than the four values that can be stored in a single texel.
Each rendering pass in which a shader is executed is preceded by a setup phase. Here,

OpenGL commands are called to set up the rendering pipeline. The shader is activated,
texture maps bound to texturing units, uniform variable values set, an orthogonal map-
ping specified and framebuffer object attachment points chosen. Then, a slab is rendered
with texture coordinates set at each vertex so that after interpolation by the rasterizer,
the desired locations are accessed for each fragment. If another rendering pass follows,
the state of the pipeline is preserved by OpenGL and only those properties which are to
be changed need to be set up anew.

In conjunction with the techniques described in the following three sections, GPGPU
can be used to perform arbitrarily complex computations. However, one limitation exists
that cannot be easily overcome. GPUs suffer from a lack of precision. While floating
point numbers can be represented according to the IEEE 754 single precision specifi-
cation, not all features of the standard are followed. Denormalized numbers are not
supported and rounding rules relaxed, allowing for a range of optimizations and simpli-
fications in the GPU hardware at the cost of precision. The small errors introduced may
not be visible in a generated image but can become apparent in scientific applications.
Also, the exact deviations from the IEEE standard differ between vendors. The most
glaring imprecision is experienced in ATI GPUs of all generations but the most recent
which are able to store 32 bit numbers but perform calculations with a precision of only
24 bits.

6.2.1.1. Scatter versus Gather Operations

Every algorithm can be decomposed into a series of steps each of which either scatters
or gathers data:

Scatter The input values are used to calculate the location a predefined output will be
written to. An example is the calculation of an array index and the subsequent
storage of a constant at that position.

Gather The storage location is predetermined while the output value is calculated. An
example is the addition of two variables and placement of the result in a third.

Of these two operation types, only gather is naturally supported by a fragment shader.
The output location is given by the framebuffer position of the current fragment and
cannot be changed. The value to be written is determined by the shader based on data
gathered from texture maps and global variables. When an algorithm to be implemented
on the GPU requires a scatter operation, several options are available. An alternative
formulation of the algorithm may exist that has similar complexity but uses only gather
operations. This approach should be chosen whenever possible as it leads to the highest
computational efficiency.

If no alternative formulation is found, a vertex shader can be used to perform the
scatter. It is able to adjust the positions of vertices, thus scattering the information
associated with them throughout the framebuffer. The drawback is that a large number
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of vertices usually need to be generated. Because three-dimensional scenes consist of
few vertices and many fragments, GPUs are optimized for fragment processing so that
vertex shaders and high numbers of vertices negatively affect performance.

The third option is to simulate a scatter operation using two fragment shaders. The
first stores value and position pairs into the framebuffer. A second shader then uses the
resulting texture as input and for each fragment, checks whether its position is associated
with a value anywhere in the texture. Because a series of texels need to be read for each
fragment, this approach is also not likely to provide high performance. It is, however, a
special case of the technique described in the next section and heavily used in GPGPU
applications.

6.2.1.2. Multipass Rendering

Multipass rendering refers to the subsequent execution of shaders, using the output of
previous passes as the input of the next. Only with this technique is it possible to
decompose an algorithm into a series of shader invocations. The rendering pipeline may
be set up differently for each pass by changing the shader, input and output textures as
well as the orthogonal mapping and the size of the slab rendered. Because a framebuffer
object is always used, the results of every pass are captured into one or more textures
and are available until they get explicitly overwritten or discarded.

The same algorithm can be divided into shaders in many different ways. Except for
rounding errors and imprecisions, the computation results should be identical in all cases.
Efficiency, however, can vary greatly depending on the degree to which the components
of the GPU are utilized or idle. Unfortunately, there are no precise rules by which to
determine how many or how few operations should be grouped into a shader. Some of
the factors that can help with the decision are listed in section 6.2.2.

6.2.1.3. Reduction

Many gather operations include a reduction component where the elements of an input
array are combined into a smaller number of output elements. Looping in the fragment
shader to directly calculate the final elements, while possible on newer GPUs supporting
complex shaders, is not efficient. It is better to combine only small groups of elements,
reducing the size of the array and then to repeat this process as often as required. When
implemented as multi-pass rendering, reduction requires only a single pair of textures.
One serves as input and the other as output with their roles exchanged after each pass.
This is often referred to as ping-ponging.

For each pass, the size of the slab and the texture coordinates at its vertices are
adjusted to simulate input and output arrays of decreasing size. When performing
reduction in one dimension, every pass usually combines two neighboring texels, halving
the size of the array. The slab used in the first pass of a horizontal reduction therefore
covers only the left half of the output texture while the coordinates at its vertices span the
entire input. Both slab width and coordinate range are then halved for each subsequent
pass. To reduce a texture map n texels wide to a width of one, log2 n passes are required.
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In two-dimensional reduction, the texture size is halved in both dimensions by combining
four neighboring texels. The number of passes required to reduce an n× n texture to a
single texel is again log2 n.

Between rendering passes, no changes to the rendering pipeline other than the swap-
ping of the roles of the two textures are necessary. The fastest way to achieve this is
to bind both textures to texturing units as well as attachment points of the framebuffer
object. After each pass, only the numbers of the texturing unit used for input and the
attachment point serving as output need to be adjusted.

6.2.2. Optimizations

A GPU owes its computational efficiency to the stream processing model. Because the
calculations performed for each fragment are independent, they can be run in parallel
on multiple execution units. NVIDIA’s GPUs feature 16 fragment processors in the
Geforce 6 and 24 in the Geforce 7 series, each of which can run the shader for a different
fragment. Multiple vertex processors are also provided, 6 by the Geforce 6 and 8 by
the Geforce 7 series. Every processor can execute several instructions per clock cycle,
further increasing performance.

Due to the secretiveness of vendors, little information is available about the design of
the processors and their optimal utilization. Much of what is known can be gathered
from the GPGPU website and its forums [gpg06], a programming guide by NVIDIA
[NVI05] and the GPU Gems series of books [Fer04]. One important insight is that
the processors are not truly independent. Not only do they share caches but optimal
performance is only achieved when all processors execute the same instructions. It
follows that conditional branching should be used sparsely as performance suffers when
the execution paths differ between fragments. Another important observation is that to
reach peak performance, each rendering pass should consist of at least 10, 000 fragments.

This combined with the fact that texture caches are relatively small, estimated at a
few kilobytes, indicates that complex shaders executed for only a few fragments should
be broken down into several simpler shaders, each of which calculates a large number of
intermediate values. Simpler shaders also reduce the risk of exceeding the limits of the
GPU hardware. If a shader needs more resources, for example texturing units, variables
or instructions per fragment, than are provided by the GPU, it may run in slow software
emulation or fail to compile at all.

Several other aspects should also be kept in mind when designing a GPGPU applica-
tion. Built-in functions such as sin, cos and log are executed in a single cycle on the
GPU. This means that contrary to a CPU based implementation, there is no need to
tabulate their values to achieve optimal performance. From sections 6.1.2 and 6.1.3 it
follows that textures should have power of two dimensions and the ones that will be ren-
dered into are best attached to framebuffer objects in such a way that only attachment
points need to be switched between rendering passes.

Two obstacles in the development of shaders are the lack of proper debugging tools and
bugs in the drivers. While a shader can be executed in an emulated fragment processor
to analyze its behavior, this does not help in finding problems related to the interaction
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with other GPU components. The interaction is also important when profiling shaders to
increase their efficiency. The NVShaderPerf tool by NVIDIA2 can output the assembly
code generated for a GLSL source file and count the number of cycles required for its
execution. However, because the complex interactions with texturing units and caches
are not simulated, all numbers are produced under the fictitious assumption that every
texture access needs only one cycle.

Live debugging information is only available in the form of OpenGL error codes, a
small number OpenGL state variables that indicate whether previous commands were
successful and an info log which contains the messages output by the most recent GLSL
compiler run. The only way in which a shader can provide feedback is through the
values it outputs into the framebuffer. The generated texture can be read back into
main memory and analyzed to verify the results of the shader. Debugging is complicated
by bugs in the drivers supplied by GPU vendors. Because they are closed source and
only limited support is provided, obscure and undocumented bugs may be present. A
prominent example for NVIDIA GPUs is their failure to write into the 4096th column
or row of a texture attached to a framebuffer object, limiting the usable texture size to
4095× 4095.

6.3. Registration

The registration system of chapter 5 performs all of its calculations on the CPU. How-
ever, a series of hooks are included which allow the principles of GPGPU to be applied
to it. They are the four abstract classes highlighted in figure 5.4. By providing new im-
plementations, the sampling of the two images and the calculation of mutual information
or its derivatives can be moved onto a GPU. These operations encompass the bulk of
the computations required in each iteration. Because porting from CPU to GPU causes
substantial development and debugging effort, other elements that have less significant
impact on execution time are not considered.

As noted in section 5.2.1, sampling and the calculation of mutual information or its
derivatives are largely independent. Their GPU based implementations are therefore
described separately in the following sections. Each implementation essentially follows
its CPU based counterpart from chapter 5. The optimizations applied there are retained
and the main difference is that iterations are converted to parallel calculations of the
individual elements. If sums are to be evaluated, the values of the addends are deter-
mined in parallel and then summed via reduction operations. To simplify the code, the
assumption is made that the sizes of the two samples are identical, N = NA = NB.

All implementations are described in detail, covering every computation step and
shader. The reasons for this elaborate treatment are twofold. First, the concepts of
GPGPU are still not widely known and thorough explanations may be required to pro-
vide clarity. Second, any future work is significantly aided. Only if the interactions of
the individual components, shaders and textures in this case, are fully described can the
system easily be modified or extended.

2http://developer.nvidia.com/object/nvshaderperf home.html
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6.3.1. Notations

At the center of the presentation of every implementation is a diagram that illustrates
the control and data flows. The first diagram to use all elements available in the notation
may be found in figure 6.5. Shown on the left is the control flow. Blue headings indi-
cate the starts of public methods and subroutines. Every implementation contains an
Initialization method that performs the required precalculations. For sampling, three
more public methods are provided. They are SampleReference, SampleRegistered and
SampleRegisteredDerivatives. As their names imply, the first two sample the images
while the third determines both registered image intensities and their derivatives with
respect to the transformation parameters. Each method returns the values for all sam-
pling points. For the calculation of mutual information or its derivatives, the only public
method other than Initialization is Calculation.

Three types of blocks appear in the control flow, all rectangular in shape. The italic
label CPU expresses a step in which the CPU manipulates textures. Following estab-
lished conventions, blocks with double vertical borders indicate subroutine or method
calls. The name of the routine is written in blue and the size of the texture area in
which it stores its return values is given in the lower right corner. It should also be
noted that when the sizes of data structures are given, they are provided in the order
width× height (×depth), as is usual for texture maps and arrays and contrary to what
is done for matrices.

All other blocks correspond to rendering passes. Each is labeled with the name of
the shader active during the pass. The size of the slab rendered, and thus the number
of fragments for which the shader is executed, is again given in the lower right corner.
When a reduction operation is performed and the same shader used in multiple passes,
this is indicated by a circular arrow in the lower left corner of the block. The number of
passes is specified next to the arrow and the sizes of the slab are given for the first and
the last pass. A loop involving several blocks is shown by a dashed box around them
with a circular arrow and the number of iterations in the lower left corner.

The texture maps are represented by columns on the right hand side of the control
flow diagram. For each block in the control flow, the input and output textures are
indicated by arrows. Green arrows correspond to reads and red, to writes. Because the
output of every shader is to be captured for use in later parts of the calculation, each
rendering pass manipulates at least one texture map attached to a framebuffer object.
Using multiple render targets, it is also possible for a shader to affect more than one
texture. In the case of reduction operations and loops, the same shader may be executed
several times with different input and output textures. The alternatives are indicated
by dashed extensions of the green and red arrows.

In addition to diagrams and textual explanations, the full source code of all shaders
is provided in appendix A. Not explicitly shown in the following sections are a series of
common initialization steps that must be executed by every class using the GPU:

� Create OpenGL context
� Query available extensions
� Allocate texture maps
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� Allocate framebuffer objects
� Attach textures to framebuffer objects
� Load, compile and link shaders

These steps prepare the data structures and set up the rendering pipeline. The context
created is a reference to the pipeline for all subsequent OpenGL commands. As noted
in sections 6.1 and 6.1.3, if any of the initializations fail due to insufficient hardware
resources or driver support, registration is aborted.

While sampling and calculation of mutual information or its derivatives are explained
separately, their implementations are placed in joint classes in the actual code. The
primary reason for this is better control over the state of the rendering pipeline. When
all OpenGL commands that affect the pipeline are executed by the same object, it can
keep track of the precise state. As suggested in section 6.2.1, instead of setting it up
from scratch for every rendering pass, only the required changes need to be made to the
current state. A special case are classes that follow a hybrid approach. Here, sampling is
performed on the CPU, using the TransformationNonRigid class of section 5.2.2.6. The
samples are then stored into texture maps and the GPU based implementation is used
to calculate mutual information or its derivatives. Benchmark results comparing the
performance of CPU, GPU and hybrid implementations will be provided in chapter 7.

6.3.2. Rigid Sampling

Described in this section is the implementation of the sampling process using the rigid
transformation function. Control and data flow are shown in figure 6.4.

During the initialization and precalculation stage, the sampling point positions and
the two tomographic images are uploaded to the GPU as texture maps. The images
are retrieved from the Data class of section 5.2.2.2. Because they are embedded in
volumes with power of two dimensions, both images can directly be stored in 3D texture
maps. Since the intensities are normalized to an integer range of [0, 255], each voxel is
represented by a texel consisting of a single byte.

The modes of the textures, as introduced in section 6.1.2, are set to clamp to border
and linear. The first dictates that a background intensity is returned when a texel out-
side a volume is addressed. This intensity is set to zero, in line with the handling of such
cases by the TransformationRigid class. The other mode enables trilinear interpolation
in hardware. On every access to one of the textures, the GPU automatically evaluates
equation (5.7) and calculates the intensity from those of eight surrounding texels. To-
gether, the two modes ensure that after the implicit conversion to voxel coordinates,
only a single look-up is required to retrieve the correct intensity regardless of where a
sampling point is located in an image.

The sampling point positions are generated using the same method as employed by the
CPU based implementation, described in section 5.2.2.4. Each sampling point coincides
with the center of a voxel in the reference image. Per point, two sets of coordinates are
stored in SamplingPositions. One is expressed in millimeters, the other directly as a
position in the DataReference texture. It is calculated from reference volume indices x′′u
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SampleRegisteredDerivatives

SampleRegistered

SampleReference

CPU

Initialization:

SampleReference:

SampleRegistered:

SampleRegisteredDerivatives:

CPU

S
a
m
p
l
i
n
g
P
o
s
i
t
i
o
n
s

D
a
t
a
R
e
f
e
r
e
n
c
e

D
a
t
a
R
e
g
i
s
t
e
r
e
d

S
a
m
p
l
e
R
e
f
e
r
e
n
c
e

S
a
m
p
l
e
T
r
a
n
s
l
a
t
i
o
n
D
e
r
i
v
a
t
i
v
e
s

S
a
m
p
l
e
R
o
t
a
t
i
o
n
D
e
r
i
v
a
t
i
v
e
s

S
a
m
p
l
e
R
e
g
i
s
t
e
r
e
d

S
a
m
p
l
e
R
e
g
i
s
t
e
r
e
d
2

N×2

N×2

N×2

Figure 6.4: Control and data flow: Rigid sampling
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by adjusting for the difference in addressing between arrays and 3D textures illustrated
in figure 6.3 (a) and (b). To each component (x′′u)k, 0.5 is added and the result divided
by the size of the texture in the kth dimension.

When sampling the reference image, the SampleReference shader is executed for the
N × 2 sampling points, the first N of which represent the sample SA and the other,
SB. The shader uses the precalculated texture locations to directly retrieve the desired
intensities. The only additional operation is scaling. As explained in section 6.1.2, the
values of all textures whose components are not floating point numbers get rescaled to
a range of [0, 1] on every access by a shader. To obtain the original image intensities,
they are therefore multiplied by 255. The data type of the SampleReference texture
into which the results are written is half precision float. While this uses 16 bits to store
a value for which 8 bits would have been sufficient, it ensures that no further automatic
rescaling is applied to the sample by the GPU.

The shader that samples the registered image is similarly simple but implements the
rigid transformation function. According to equation (5.3), this can be done as a matrix-
vector multiplication, which is a native and fast operation on the GPU:

xv = MTxu (6.1)

Although only three coordinates are stored for the sampling points xu, the required
homogenous coordinate representations can efficiently be obtained. The fourth compo-
nent of a texture map is the alpha intensity channel. If it is not part of the texture,
the GPU automatically substitutes a value of one. The sampling point positions read
from the SamplingPositions texture map may therefore directly be treated as vec4
homogenous coordinate representations. As the implicit conversion from millimeters to
voxel coordinates and the adjustment for the addressing scheme of a 3D texture consist
of scaling and translation, they can also be expressed as a matrix MC . Since both MT

and MC are applied to every xu, they can be premultiplied so that the shader needs to
perform only one matrix-vector multiplication. The resulting matrix M′

T is passed to
the shader as a uniform parameter of mat4 type:

M′
T = MCMT (6.2)

The SampleRegisteredDerivatives method returns the registered image intensity
and its derivatives with respect to all six transformation parameters for each sampling
point xu. The method that the SampleRegisteredDerivatives shader uses to estimate
the derivatives is that of section 5.2.2.4. First, the gradient is calculated from the
intensities at M′

Txu and three neighboring points, as specified in equation (5.14). The
offsets that must be added to reach these points are precalculated and passed to the
shader as uniform parameters. Next, equation (5.13) is evaluated for each parameter p:

d

dp
v (T (xu)) = grad v (T (xu))MT,pxu (6.3)

As noted in section 4.1.2.2, most of the elements of the MT,p are zero. For the
translation parameters tx, ty and tz, only the last column contains non-zero elements.
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Instead of the entire matrix, only that column is therefore given to the shader and used
in the calculations. In the case of the rotation parameters α, β and γ, 3 × 3 matrices
are used.

Because the shader calculates an intensity and six derivatives, multiple render tar-
gets are required to store its outputs. Following the explanation in section 6.1.3, all
texture maps that are written to must have not only the same dimensions but also iden-
tical format. Three textures with three single precision floating point components each
are used. SampleTranslationDerivatives and SampleRotationDerivatives store the
derivatives with repsect to the translation or rotation parameters, respectively.
SampleRegistered2 receives the registered image intensity at each point. On every

access to this texture, three components are read although only one of them contains
useful information. To reduce the total number of bytes that need to be transferred from
memory over the course of registration, the intensities are copied to a more suitable tex-
ture with just one half precision floating point component. An OpenGL copy command
is issued by the CPU which, depending on the GPU and its driver, may be executed in
hard- or software.

6.3.3. Rigid Mutual Information Derivative

As suggested in section 6.3, the GPU based estimation of mutual information deriva-
tives largely follows the method described in section 5.2.2.4 with the main difference that
instead of being performed iteratively, all summations are executed in parallel by eval-
uating the addends first and then applying reduction operations. During initialization,
the values of the Gaussian density functions are precalculated and stored in the texture
maps Gaussian1D and Gaussian2D. Because it offers the most convenient addressing,
the texture type Rect is used. Then, the reference image is sampled. This is handled
entirely by the SampleReference method described in the previous section.

The first step in the actual calculation for a new alignment is the sampling of the
registered image intensities and their derivatives with respect to all transformation pa-
rameters. This, again, is handled by the appropriate method from the previous section.
Next, equation (5.8) must be evaluated:

d

dp
MI? (X,Y ) =

1
NB

∑
xi∈SB

∑
xj∈SA

[
WY (vi, vj)

1
σ2

Y

−WX,Y (wi,wj)
1

σ2
Y,Y

]

(vi − vj)
(
d

dp
vi −

d

dp
vj

) (6.4)

The definitions used are provided by equations (5.9) and (5.10):

vi =v (T (xi)) wi =
(

u (xi)
v (T (xi))

)
(6.5)

WY (vi, vj) =
fN

0,σ2
Y

(vi − vj)∑
xk∈SA

fN
0,σ2

Y

(vi − vk)
WX,Y (wi,wj) =

fN0,Σ
(wi −wj)∑

xk∈SA

fN0,Σ
(wi −wk)

(6.6)
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Figure 6.5: Control and data flow: Rigid MI derivative calculation
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The weightsWY andWX,Y are calculated first. This process is distributed among three
shaders. Weights determines only the numerators of the expressions in equation (6.6)
and stores them into the texture maps WeightsV and WeightsW. The shader is executed
for every pair of points (xi,xj) ∈ SB × SA and uses the precalculated values of the
Gaussian density functions and the sampled image intensities.

Next, the denominators are calculated. Because the computation is identical for the
WY and the WX,Y , the same series of shaders is executed twice with different input and
output textures. The WY are considered first.
AddWeights performs a horizontal reduction operation, summing the numerator values

for every xi ∈ SB. As each pass halves the effective width of the texture, a logarithmic
number of steps is required. In the first pass, the input texture is WeightsV. Then,
WeightAddition1 and WeightAddition2 are used alternatingly as input and output.
After reduction has completed, the result is a single column of N values, each corre-
sponding to the denominator for an xi ∈ SB. Since division on the GPU is slow, the
reciprocal of every denominator is calculated only once, converting it into a multiplier.
This is handled by the WeightMultiplier shader. The reciprocals are additionally pre-
multiplied by σ−2

Y , reducing the number of multiplications required when evaluating
equation (6.4). If a denominator is zero, a value of zero is substituted for its reciprocal.
The results are stored in WeightMultipliersV.

The entire summation and inversion process is then repeated with WeightsW as initial
input, WeightMultipliersW as final output and σ−2

Y,Y used in the premultiplication.
After the weights have been precalculated, the addends of equation (6.4) can be eval-

uated. The shader that performs this operation is WeightedDerivatives. For each pair
of sampling points, the part of the addend that is independent from the parameters p is
calculated first using the precalculated numerators and denominators of WY and WX,Y

and the registered image intensities. Then, the result is multiplied with
(

d
dpvi − d

dpvj

)
.

The derivatives of the registered image intensities with respect to the transformation
parameters are obtained from the two textures SampleTranslationDerivatives and
SampleRotationDerivatives. Because each holds the derivatives for three parameters,
the subtraction and multiplication are performed for them in parallel. The resulting ad-
dends are then output to the textures WeightedSampleTranslationDerivatives and
WeightedSampleRotationDerivatives.

In the final stage of the calculation, the nested sum of equation (6.4) is evaluated by
summing the addends. This is done by a two-dimensional reduction operation via the
shader AddWeightedDerivatives. Beginning with an input texture of size N × N , it
adds all elements in a logarithmic number of steps by halving the amount of data in both
dimensions per iteration. Reduction is performed twice, first for the derivatives with re-
spect to the translation parameters and then for the rotation parameters. The temporary
texture maps used in the ping-ponging are WeightedSampleDerivativeAddition1 and
WeightedSampleDerivativeAddition2. At the end of every reduction, the three result-
ing derivatives are retrieved by the CPU from the first texel of the ping-ponging texture
last written to.

Because six derivatives are calculated for each of the N ×N sampling point pairs, the
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memory required by intermediary textures grows faster in N than for any of the other
GPU based implementations. To increase the usable sample size, an alternative code
path is provided that employs smaller textures. The last two steps, derivative calculation
and addition, are repeated four times, on every execution considering only a N/2×N/2
subset of the sampling points. As the texture, framebuffer object and shader switches
negatively impact performance, this code path is only used if the sample size is too large
for a direct calculation on the given GPU.

6.3.4. Rigid Mutual Information

The estimation of mutual information again closely follows the CPU based implemen-
tation, as described in section 5.2.2.5. Initialization begins with the same two steps as
used in section 6.3.3. The values of the Gaussian density function are precalculated and
the reference image is sampled. Next, its entropy is estimated. The formula used for
this purpose is obtained from equation (5.15):

H? [X] = − 1
N

∑
xi∈SB

log
1
N

∑
xj∈SA

fN
0,σ2

X

(u (xi)− u (xj)) (6.7)

For each pair of sampling points (xi,xj) ∈ SB × SA, the addend of the inner sum
is calculated by the shader GaussianPDF1D. It retrieves the reference image intensities
from the SampleReference texture and uses their difference to look up the precalculated
value of the Gaussian density function in Gaussian1D. The addends are placed in the
EntropyCalculation1 texture and the Entropy subroutine is called to evaluate the
remainder of the equation.

The first step in calculating the mutual information for a new alignment is the sam-
pling of the registered image, handled by the appropriate method from section 6.3.2.
Then, the registered image entropy is estimated. According to equation (5.15), once
the two images have been sampled, their entropies are calculated in the same way. The
GaussianPDF1D shader and the Entropy subroutine are therefore employed again, the
only difference being that intensities are read from the SampleRegistered texture. For
the joint entropy, the summation is identical and only the calculation of the addends
differs:

H? [X,Y ] = − 1
N

∑
xi∈SB

log
1
N

∑
xj∈SA

fN0,Σ

((
u (xi)

v (T (xi))

)
−
(

u (xj)
v (T (xj))

))
(6.8)

The values of the addends are determined by the shader GaussianPDF2D. It looks up
the values of the two-dimensional Gaussian density function in Gaussian2D based on
the differences of the intensities read from SampleReference and SampleRegistered.
To sum the addends, the the Entropy routine is called once again.

This routine employs three shaders. First, a horizontal reduction is performed by
AddHorizontally. The initial values are read from EntropyCalculation1, the textures
EntropyCalculation1 and EntropyCalculation2 used for ping-ponging and the result
of the reduction placed in one of them, depending on the number of passes required.
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Figure 6.6: Control and data flow: Rigid MI calculation
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The shader applied next is ScaleLog. It multiplies the resulting sums with N−1 and
takes their logarithms. As explained in section 5.2.2.5, when the value of a sum is
sufficiently close to zero, zero is substituted for its logarithm. The last operation is a
vertical reduction, executed by the AddVertically shader using the same intermediary
textures as before. The result of this reduction is read by the CPU from the first texel
of the the ping-ponging texture last written to. In order to obtain the desired entropy,
the value is then divided by N and negated. Mutual information is estimated from the
entropies using equation (2.40):

MI (X,Y ) ≈MI? (X,Y ) = H? [X] +H? [Y ]−H? [X,Y ] (6.9)

There is one optimization used in section 5.2.2.5 but omitted on the GPU. When
calculating the entropies of the two images, an addend is generated for each pair (xi,xj)
instead of considering every intensity combination only once and weighting its addend
with the number of times it occurs. The reason is that counting the occurrences of each
intensity in the samples is a scatter operation which cannot directly and efficiently be
implemented on a GPU, as explained in section 6.2.1.1.

6.3.5. Non-Rigid Sampling

In the next two sections, different GPU based implementations are proposed for the
sampling process using a non-rigid transformation. Both calculate the transformation
function and its derivatives using the methods of section 5.2.2.6. The extensive opti-
mizations described there are not repeated here in detail. Only their implementations
on the GPU are addressed. The two proposals differ in the granularity with which the
calculations have been decomposed into shaders.

6.3.5.1. Monolithic Shader

The first approach is illustrated in figures 6.7 and 6.8.

Initialization

The initialization method serves several purposes. In the first step, the two images are
retrieved from the Data class and stored into 3D textures. Their modes are set to clamp
to border and linear so that the intensity for any set of voxel coordinates may directly
be queried. A grid of 8× 8× 8 points is then constructed and their positions recorded in
the GridPositions texture. Points that fall outside the reference image are pruned so
that their total number gt may be less than 83. Placed in the ClassificationPattern
texture are the offsets from a grid point to the 257 positions at which the reference image
should be sampled to determine whether significant data is present in its vicinity. The
grid point positions are expressed as locations in the DataReference texture and the
offsets are scaled so that they may directly be added to these locations.

The shader Classify is then executed. It samples the reference image at the 257
offsets from every grid point and classifies the intensities as indicating either significant
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information or background noise. According to section 4.2.3, the threshold to be used
for this purpose is t1 = 7. Because the intensities are rescaled from a range of [0, 255]
to [0, 1] by the GPU, the actual threshold in the shader code is 0.03. The output of
the shader is zero when background noise is detected and one if significant informa-
tion is found. A horizontal reduction operation performed by the AddClassifications
shader sums the classification results for each grid point. The input is read from
the Classifications texture in the first pass while ClassificationAddition1 and
ClassificationAddition2 are used for ping-ponging.

Next, the CPU retrieves the sums and performs further precalculations. Nodes are
placed at the grid points for which significant data is present at more than t2 = 85 points
in the pattern. The positions of the n resulting nodes are written to the NodePositions
texture. For convenience, three types of information are recorded in the two columns
of the texture. Stored in the first column for each node is its position as a location
within the DataReference texture. In the second column, the position is expressed in
millimeters. Additionally, the number of the grid point at which the node is located is
recorded in the otherwise unused fourth component.

The number of the node present at each grid point is put into the texture map
PaddedGridPointNodes. It is of type Rect with a single column and the rows refer-
ring to the grid points traversed first in x, then y, then z direction. As was done in
section 5.2.2.6, the grid is padded with three additional points before and after it in
each dimension. Due to the order in which the grid is traversed, the three padding
points at the end of every row are immediately followed by those at the beginning of
the next. The same is true for the three padding rows at the beginnings and ends of
the slices. In the PaddedGridPointNodes texture, consecutive padding grid points are
aliased to each other so that rows are separated by exactly three points and slices, by
three rows of points. The padding before the first actual grid point and after the last is
also omitted. This reduces the maximal number of points for which information must
be recorded to gp = 8 (8 + 3) (8 + 3)− 3 (8 + 3)− 3 while ensuring that there is enough
padding before and after the grid in each dimension.

Two components are stored in PaddedGridPointNodes for every grid point. The first
has a constant value of 0.5 and the second is the zero-based node number plus 0.5 or the
constant −128 if no node is present. The components retrieved for a grid point may thus
directly be used as indices into a Rect texture providing additional information about
the node located at its position.

The last texture generated in this step is NodeWeights. It contains the elements of
the n×n matrix C−1. They are obtained by constructing and inverting the matrix C as
described in section 5.2.2.6. The wrap mode of this texture is set to clamp to border so
that if the matrix element for an invalid node pair is requested, the background intensity,
which is set to zero, is returned instead.

In the next precalculation step, the CopyNodeWeight shader is executed for every grid
point and node combination. If a node is present at the grid point, the element of C−1

for the node pair is returned. Otherwise, a value of zero is used. The output of the
shader is stored into the PaddedGridPointNodeWeights texture. It can later be used to
retrieve the element of C−1 for a node pair if for one of the nodes, only the grid point at
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which it is located is known. To generate its output, the shader uses the node number
offset by 0.5 and the second component of PaddedGridPointNodes as indices into the
NodeWeights texture. If a node is present at the grid point, the correct element of C−1

is retrieved. Otherwise, the value read from PaddedGridPointNodes is −128 so that
a location outside of NodeWeights is queried which, due to its wrap mode, results in
zero being returned. This entire step is only required if the derivatives of the reference
image will later be queried. When only SampleReference and SampleRegistered will
be called, it may be omitted.

The very last precalculation step is again executed on the CPU. In it, a random
pattern of N × 2 sampling points x′u to be centered around every node is chosen and
the precalculations possible for each point executed. The computations performed are
identical to those described in sections 5.2.2.6 and 5.2.2.7. The positions of the sam-
pling points are stored in two textures. In SamplingPositionsReference, they are
scaled so they can directly be added to locations within the DataReference texture. In
SamplingPositionsRegistered, the positions of the points are expressed in millime-
ters. The fourth component of the texture expresses the offset used to locate a corner of
the relevant 3× 3× 3 sub-grid. The 27 precalculated values of the radial basis functions
for each of the N × 2 points are recorded in the 3D texture RBFs.

UpdateCoefficients

Shown next in the diagram is the UpdateCoefficients subroutine. It updates the
weights αi whenever the parameter vectors qi at the nodes have changed by evaluating
equation (5.17):

A = C−1Q (6.10)

As defined in section 4.2.2, A and Q both have n rows and three columns. They can
compactly be represented as texture maps with a single column and three components.
The calculation that needs to be performed then is a matrix-vector multiplication, ex-
ecuted in parallel for all three components. The elements of Q are uploaded into the
Displacements texture by the CPU. In contrast to section 5.2.2.6, they are not negated
at this stage. Because the matrix C−1 and the vectors are too large to be handled
natively by a GPU, the matrix-vector multiplication is split into two steps. First, the
shader WeightDisplacement multiplies the elements of C−1 and Q. Then, they are
summed by AddWeightedDisplacements in a one-dimensional reduction operation us-
ing CoefficientCalculation1 and CoefficientCalculation2 for ping-ponging. As
every step halves the number of rows, reduction is applied to the whole texture whose
height npot is guaranteed to be a power of two. Rows not containing weighted displace-
ments are set to zero during precalculation to not corrupt the results.

The calculated weights are found in the first column of the ping-pongig texture last
written to. They are retrieved by the CopyCoefficient shader and stored into the
Coefficients texture. Using the same mechanism as described for the CopyNodeWeight
shader, a location outside the piing-ponging texture is accessed and zero weights are
recorded whenever no node is present at a point.
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tion (continued)
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SampleReference

The three sampling methods are described next. SampleReference is very simple, con-
sisting of a single rendering pass. For each combination of a node pi and a sampling
point x′u, the SampleReference shader calculates xu = pi + x′u. Because the implicit
conversion from millimeters to voxel coordinates has already been applied to the repre-
sentations of pi and x′u read from the input textures, the resulting point xu can directly
be used to look up the reference image intensity in DataReference. Before it is returned,
the intensity is multiplied by 255 to undo the rescaling applied by the GPU.

SampleRegistered

When sampling the registered image, the Coefficients texture is first updated by
calling the UpdateCoefficients subroutine. Then, the SampleRegistered shader is
executed for every node pi and sampling point combination x′u. Implemented in this
shader is the entire evaluation of the transformation function of equation (5.16) with
additional negations to invert the directions of the displacements and match the CPU
based implementation of section 5.2.2.6:

xv = MT

xu +
n∑

j=1
−αjRa (‖xu − pj‖)

1

 (6.11)

All optimizations described in section 5.2.2.6 are used. The positions of the node
and the sampling point expressed in millimeters are added, yielding xu in the first three
components and the number of the grid point at a corner of the relevant 3×3×3 sub-grid
in the fourth.

Then, the 27 relevant grid points are traversed in an unrolled loop that spans several
dozen lines of shader source code. For every grid point, the product of the weights αj

read from Coefficients texture and the precalculated value of the radial basis function
found in RBFs is subtracted from xu. Because the grid is padded and weights of zero
have been recorded for the grid points at which no nodes are located, the multiplication
and addition may be performed without checking whether the grid point actually exists
and a node is present at its location.

After all relevant grid points have been considered, the calculated vector is extended to
a homogenous coordinate representation and the rigid transformation applied. Instead
of MT , the matrix M′

T is used, which is constructed as described in section 6.3.2 and
integrates the implicit conversion to voxel coordinates. The registered image intensity
is then looked up at the resulting point in the DataRegistered texture.

SampleRegisteredDerivatives

The sampling of the registered image and its derivatives is split into four steps. After
UpdateCoefficients has been called to update the Coefficients texture, the shader
TransformationDerivativeWorld is executed for every node pi and sampling point x′u
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pair. It calculates the derivatives of the transformation function with respect to the
three components of the parameter vector qi, as defined in equation (5.20):

d

dqi
T (xu) = MT

n∑
j=1

−
(
C−1

)
ji
Ra (‖xu − pj‖) (6.12)

Only the sum is actually evaluated and the multiplication with MT deferred until
later. This way, its output is not a matrix that would require multiple render targets
and three textures to record but a scalar value that can be stored in the single component
of TransformationDerivativeWorld. The summation is again unrolled in the shader
source code. xu and a corner of the relevant sub-grid are determined in the same way
as done by SampleRegistered.

Then, the 27 relevant grid points are traversed. For each grid point at which a node pj

is located,
(
C−1

)
ji

is retrieved and multiplied with the precalculated value of the radial
basis function from RBFs. Because the grid is padded and the elements of C−1 have
been copied into PaddedGridPointNodeWeights such that a value of zero is obtained
for points at which no node is found, the texture access and multiplication may be
performed without further checks. The output of the shader is the negated sum of the
27 products.

The next shader, SampleRegisteredDerivative, uses these results to calculate the
desired derivatives of the registered image intensities with respect to the transformation
parameters, as defined in equation (5.21):

d

dqi
v (T (xu)) = grad v (T (xu))MT

n∑
j=1

−
(
C−1

)
ji
Ra (‖xu − pj‖) (6.13)

First, calculations identical to those found in the SampleRegistered shader and de-
scribed above are performed to determine xu and apply the transformation function and
the implicit conversion to it. Then, the registered image intensities are looked up at
the resulting position and three neighboring points to estimate the gradient according
to equation (5.14). The gradient is then multiplied by the matrix MT and the sum
precalculated for the current node and sampling point combination.

The shader writes four values into the SampleAndDerivativesRegistered texture,
the first of which is the registered image intensity at the transformed point and the other
three, its derivatives with respect to the three components of the displacement vector
qi. As noted in section 6.3.2, it is a waste of memory bandwidth to read back four
components also for those subsequent calculations that only require the registered image
intensity. Thus, in the last step, the intensities are copied into the SampleRegistered
texture.

6.3.5.2. Multiple Shaders

In an attempt to accelerate the evaluation of the non-rigid transformation function,
an alternative implementation has been developed. As explained in section 6.2.2, a
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Figure 6.9: Control and data flow: Non-rigid sampling, multiple shader implementation
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GPU achieves high performance when calculations are executed in parallel for a large
number of fragments. The single monolithic shader that calculates the transformation
is therefore replaced by a series of smaller shaders which produce a significantly larger
number of intermediary values that are then summed in reduction operations. Shown
in this section is only the method for sampling the registered image. Precalculation
and coefficient update are largely unchanged and where changes are necessary, they are
noted in the following explanation.

After the Coefficients texture has been updated via the UpdateCoefficients
method, the transformation function is evaluated in three steps. Because large textures
are required to hold intermediary results, not all node and sampling point combinations
can be considered at once. Instead, a single node pi and the N sampling points x′u for
one sample are used and the entire process is repeated 2n times, covering SA and SB for
all n nodes.

The first shader, WeightCoefficients, calculates the addends in equation (6.11). As
only 3 × 3 × 3 grid points are relevant to the transformation of a sampling point, the
shader is invoked 27 times for each x′u. A corner of the relevant sub-grid is located by
adding two components. The first is the number of the grid point at which pi is located.
Since this value is constant throughout the rendering pass, it is passed to the shader as a
uniform variable. Second is the offset from pi to the corner, stored in FirstGridPoints
for all x′u during precalculation.

To traverse all 27 relevant grid points, a different offset from the first point is used
for generating each row of the N × 27 texel output texture. The offsets from the first
grid point to itself and the 26 others are stored in the 1D texture PaddedGridOffsets,
also generated during precalculation. After the addends have been determined, they
must be summed for each x′u. This is done by a vertical reduction using the shader
AddWeightedCoefficients.

The SampleRegistered shader uses the precalculated sums to evaluate the remainder
of equation (6.11) and obtain the desired intensity from the DataRegistered texture.
xu is calculated as xu = pi + x′u, the precalculated sum subtracted, the result extended
to homogenous coordinates and a matrix-vector multiplication with M′

T performed.
Finally, the registered image intensity at the calculated point is looked up.

Save for imprecisions due to the different order in which the calculations are executed,
the image positions calculated by this approach are identical to those obtained from the
monolithic shader.

6.3.6. Non-Rigid Mutual Information Derivative

This section addresses the estimation of the derivatives of local mutual information. The
calculation steps are analogous to those described in section 6.3.3 with few small changes.
Except for WeightedDerivatives, all shaders are identical. During initialization and
precalculation, the only difference is that the SampleReference method which uses the
non-rigid transformation function is called.

In the Calculation method, the registered image intensities and their derivatives
are also sampled using the non-rigid transformation function. Because local mutual
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Figure 6.10: Control and data flow: Non-rigid MI derivative calculation
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6.3. Registration

information at each node pi depends only on three parameters, the intensities and their
derivatives with respect to the parameters are returned as the four components of a
single texture. The calculation that follows is repeated n times, once for each node pi

using the samples obtained by centering the x′u around its location.
The steps performed to determine the numerators and denominators of the WX and

WX,Y are completely identical to those of section 6.3.3. The WeightedDerivatives
shader that is then executed to calculate the addends of equation (6.6) is very similar
to its counterpart in that section but simplified because once the part of the addend
that does not depend on p has been obtained, it is multiplied only with the difference
of intensity derivatives retrieved from a one texture, not from two. The result is also
output into a single texture, WeightedSampleDerivatives

The shader and steps performed to sum the addends via a two-dimensional reduction
are again identical to section 6.3.3. However, because all derivatives may be found in one
texture, the reduction needs to be executed only once. The three resulting derivatives
are retrieved by the CPU from the ping-ponging texture last written to and the entire
calculation is repeated for the next node.

6.3.7. Non-Rigid Mutual Information

The calculation of local mutual information for a node pi is completely identical to the
determination of mutual information in the rigid case. The calls to rigid sampling meth-
ods are simply replaced with their the non-rigid versions and all calculations repeated
n times. This results in the precalculation of a reference image entropy for each node
and, during the calculation phase, the determination of all n local mutual information
measures.
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7. Results

The actual performance of the registration system is analyzed in this chapter based on a
range of experiments. First, mutual information is considered on its own and the question
answered whether it is a suitable similarity metric for multi-modal tomographic datasets.
Then, the entire registration system is evaluated. Assessed are both registration quality
and speed, including the accelerations possible by using GPGPU techniques.

To obtain realistic results, DICOM images of actual tomographic scans are used in all
experiments. Unfortunately, access to such images has proven to be very difficult and
only a single pair could be located. Obtained from the website of the OsiriX DICOM
viewer1, the images are used here with permission. Each consists of 83 slices showing
transversal cuts through the head and upper thorax regions of a cancer patient. The
anatomical dataset is a CT scan with slice resolutions of 512 × 512 pixels. Functional
information is provided by a PET scan whose slices have resolutions of 128× 128. Cuts
through the two datasets illustrating the node arrangements generated for them are
shown in figure 4.2. Because the PET scan covers a smaller region of the patient’s body
and the nodes are more concentrated, allowing for finer adjustments, it is used as the
reference image.

A second pair of datasets has been constructed by using the CT scan as both reference
and registered image. This allows a number of additional measurements to be conducted.
First, by considering both the PET-CT and CT-CT cases, the statistical basis of all
experiments can be increased. Second, the node arrangements generated for the CT
dataset can be tested. Third, because the optimal alignment of an image with itself
is exactly known, the registration quality achieved in the CT-CT case can precisely be
measured.

7.1. Mutual Information

The first aspect of the registration system analyzed is its similarity metric. Only if
mutual information provides a reliable assessment of alignment quality and its derivatives
have the correct signs is registration possible. The estimates of mutual information and
its derivatives calculated by equations (2.41) and (2.46) depend not only on the image
data and transformation function, but also on the sample sizes and Parzen window
variances. To reduce the number of parameters whose values may have to be adjusted,
only one sample size N = NA = NB and one variance σ2 = σ2

X = σ2
Y = σ2

X,X = σ2
Y,Y are

used. As noted in section 2.6.3, the Parzen window technique is relatively insensitive to
the precise values of the variances, allowing for this simplification.

1http://homepage.mac.com/rossetantoine/osirix/
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Figure 7.1: MI? for different PET-CT alignments

Shown in figure 7.1 is a typical plot of MI?. It is obtained for the PET-CT case at
pyramid level l = 3 using N = 2048 and σ2 = 30. The center of the plot corresponds
to a manually determined optimal alignment. Along the x and y axes, the reference
image is translated by up to 30 millimeters. Plotted in figure 7.2 for the same data
and parameters is d

dtx
MI?, the derivative of MI? with respect to the translation in x

direction. The most important observation to be made from these plots is that MI?

is a viable similarity metric for multi-modal tomographic datasets. As can be seen in
figure 7.1, the value of mutual information increases with alignment quality and reaches
its maximum at the optimal alignment. However, also apparent is the random noise that
corrupts the smoothness of the surface.

More relevant in the context of registration is figure 7.2. The estimated value of
d

dtx
MI? is plotted here in green where it is positive and in red otherwise. It is apparent

that regardless of the value of ty, the derivative with respect to tx has the correct sign.
When the registered image is translated too far to the left, d

dtx
MI? > 0 and for a

translation to the right, d
dtx
MI? < 0. Stochastic gradient ascent, which modifies tx by

adding a value proportional to the derivative, thus adjusts the translation toward optimal
alignment. Similar plots are obtained for other pyramid levels and combinations of
transformation parameters, indicating the suitability of the metric for their adjustment.
It should be noted that the noise exhibited by the derivatives is larger than that of MI?

itself.
How the estimates are influenced by N and σ2 is addressed in figure 7.3. The plots

shown here have been generated for the same image data and range of misalignments
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Figure 7.2: d
dtx
MI? for different PET-CT alignments

but different values of N and σ2. From the first row to the second, the sample size is
doubled. As is to be expected, the larger amount of information gathered for the images
leads to a higher quality and less noisy metric. Noise can also be reduced by increasing
σ2, as illustrated by the difference between the two columns. This leads to a smoothing
that removes extraneous spikes but also flattens and blurs the desired maximum. While
it is important to tune these parameters so that a smooth and sufficiently steep surface
is obtained, it can be concluded that in general, MI? truly is a non-parametric measure
of alignment quality. Adjustments to N and σ2 can make the surface easier to work
with, but they do not change its principal shape or the location of the maximum.

Based on the tomographic datasets available, the parameter values chosen for the rigid
registration pass are N = 2048 and σ2 = 30. Because the multiresolution approach of
section 3.3 is used, the effect of these settings is different at each pyramid level. For l = 4,
the first level considered, the sample size is relatively large. This leads to a very smooth,
high quality metric that can correctly assess substantial misalignments. As registration
progresses and higher resolution images are used, the relative sample size decreases and
the metric becomes more noisy. While this limits the range of misalignments for which
a reliable assessment is possible, the alignment is continuously improved and expected
to be close to optimal when the later pyramid levels are reached.

Only at l = 0 is the noise so substantial that a sample size beyond 2048 would have
been desirable. Unfortunately, due to the NVIDIA driver bug mentioned in section 6.2.2,
the maximal texture size that can effectively be used in GPU based calculations is
2048 × 2048. All rendering passes working on the entire samples would thus have to
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(c) N = 2048, σ2 = 5

-30
 0

 30-30

 0

 30
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

MI*

∆tx

∆ty

MI*

(d) N = 2048, σ2 = 60

Figure 7.3: MI? for different PET-CT alignments and N , σ2 parameter values

be split into multiple smaller steps processing subsets of the data if N was larger than
2048. Since this would have caused considerable additional development effort for little
benefit, N = 2048 is used instead and the noise accepted.

For the non-rigid pass, the sample size can be decreased as mutual information is
calculated only locally for small image regions. A value found to work well is N = 512.
However, the noise in the estimated derivatives with respect to the displacements (qi)k is
much larger than for the parameters of the rigid transformation function. σ2 is therefore
increased to 480, providing additional smoothing.

It is interesting to note that N = 50, as proposed in [Vio95], is not sufficient for any
pyramid level, not even l = 4 containing the lowest resolution images. When the amount
of information gathered is this small, the measure is dominated by noise and no amount
of smoothing will allow the actual maximum to be located. The smallest value for which
a reasonable estimate of mutual information can be obtained at l = 4 is N = 256. Due
to the larger amount of noise, usable estimates for the derivatives are not possible below
N = 512.

7.2. Registration System

The registration system uses a number of constants for which values must be chosen
before its performance can be assessed. As defined in section 5.2.2.1, these are r1, r2,
r3, m1, m2, m3, s1 and s2. The constants control the step sizes and the number of steps
executed. It is difficult to determine universally valid values form just two datasets. By
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optimizing the step sizes for the PET-CT and CT-CT scenarios, it is possible to obtain
perfect registration in a single step per pyramid level. However, this would lead to a
completely unrealistic situation and skew the results. Values less precisely tuned to the
two specific datasets are used instead.

The number of steps is set to s1 = 10 per pyramid level for the rigid and to s2 = 50 for
the non-rigid pass. These values are arbitrary but are believed to represent a realistically
long registration process. The step sizes are set so that large adjustments are possible
at l = 4 and only small corrections at l = 0. If only one step size was used, rigid
registration would strongly favor rotation over translation. This is because an increase
by one unit in tx, ty or tz moves the registered image by just a single millimeter while
the same adjustment applied to any of the angles rotates it by a whole radian, or about
57◦. The derivatives of MI? with respect to the rotation parameters are thus much
greater in magnitude than those for the translations. To compensate for this effect, the
rotation step size λr is set to a thousandth of λt, the step size for translation. Their
initial values are r1 = 2000 and r2 = 2, the factors by which they are multiplied after
each step, m1 = m2 = 0.84. In the non-rigid pass, an initial step size of r3 = 400 and
the multiplier m3 = 0.97 are used.

7.2.1. Quality

The quality of alignment achieved by the registration system is evaluated separately for
the rigid and non-rigid passes.

7.2.1.1. Rigid

Four scenarios are used to assess the quality obtained after 50 steps of rigid registration.
The transformation parameters before and after registration are summarized in tables 7.1
and 7.2, exemplary cuts through the alignments shown in figures 7.4 to 7.6. The first
scenario analyzed is most realistic and closest to an actual clinical application. Using
the registration system exactly as it was designed, PET and CT images are loaded and
registration is started. No manual adjustments are applied so that the initial alignment is
determined solely by the registration system, which, according to section 5.2.2.1, chooses
the translation that makes the centers of the two images coincide. In the other three
scenarios, the initial alignment is set manually to determine the robustness of the system
at different magnitudes of misalignment. Because no radiologist was available to evaluate
the results, the medical correctness of the PET-CT alignments could not be verified. To
nevertheless obtain an objective measure of alignment quality, two CT-CT registration
scenarios are used for which the optimum is known to be the identity transform.

Figure 7.4 illustrates the situations before and after registration for PET-CT with
automatic initial alignment. The differences are small but important. The blue reference
image remains unchanged while the placement of the red registered image is adjusted.
As can be seen in (a), there is a bright spot of activity outside the body. In (b), the
spot coincides with a lump in the patient’s body, a plausible location. In (c), the brain
is not properly aligned with the skull. Brain tissue can clearly be seen to intersect with
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Automatic Initial Alignment
tx ty tz α β γ

Before −118.201 −118.201 −1.037 0 0 0
After −113.013 −122.154 −8.734 −0.004 −0.002 0.001

Artificial Misalignment
tx ty tz α β γ

Before −80 −80 −20 0.2 0.2 0.2
After −113.255 −121.211 −10.191 −0.004 0.007 −0.027

Table 7.1: Transformation parameters before and after PET-CT registration for different
initial alignments

Experiment 1
tx ty tz α β γ

Before −30 −30 −30 0.2 0.2 0.2
After −0.257 −0.069 −1.539 0 0.003 −0.001

Experiment 2
tx ty tz α β γ

Before 30 30 30 −0.2 −0.2 −0.2
After −0.390 −0.267 1.143 0.002 −0.006 0.001

Table 7.2: Transformation parameters before and after CT-CT registration for different
initial misalignments

parietal and petrosal bones. In (d), the position of the skull is adjusted so that the brain
does not intersect with it. The values of the six transformation parameters before and
after registration are given in the first two rows of table 7.1.

In the second scenario, the CT image is translated by up to 40 millimeters per coor-
dinate from the previously found alignment and rotated by 0.2 radians, or about 11◦,
around every axis to evaluate the ability of the registration system to cope with larger
initial misalignments. The situations before and after registration are illustrated in fig-
ure 7.5 and expressed in numbers in the last two rows of table 7.1. As can be seen
both in the images and the table, the resulting alignment is almost identical to that
found for the first registration scenario. The maximal deviations in parameter values
are approximately 1.5 millimeters and 1.5◦.

To obtain a broader statistical basis and precisely measure the quality of alignment,
CT-CT registration is performed in the next two experiments. The parameter values
before and after registration are given in table 7.2 and the corresponding alignments
illustrated in figure 7.6. It can be seen that despite the large initial misalignments, the
images are reliably registered to within at most approximately 1.5 millimeters and 0.006
radians, or 0.3◦, of the optimal alignment. In figure 7.6, the blue and red images blend
into almost uniformly purple colored shapes.

It can be concluded from these experiments that using the same set of constants
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(a) Reference slice 32 before registration (b) Reference slice 32 after registration

(c) Reference slice 64 before registration (d) Reference slice 64 after registration

Figure 7.4: Cuts through PET-CT alignment before and after rigid registration with
automatic initial alignment: reference image (blue); registered image (red)
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(a) Reference slice 32 before registration (b) Reference slice 32 after registration

(c) Reference slice 64 before registration (d) Reference slice 64 after registration

Figure 7.5: Cuts through PET-CT alignment before and after rigid registration with
artificial initial misalignment: reference image (blue); registered image (red)
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(a) Experiment 1 before registration (b) Experiment 2 after registration

(c) Experiment 2 before registration (d) Experiment 2 after registration

Figure 7.6: Cuts through CT-CT alignments before and after rigid registration for
two scenarios with different artificial initial misalignments: reference image
(blue); registered image (red)
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and without manual intervention, rigid registration is able to reliably undo a range of
misalignments for different pairs of images. While the statistical basis is not large and
the medical correctness of the PET-CT alignments has not been verified, the plausible
results obtained in all cases make it appear likely that high quality alignments can be
produced for a wide range of tomographic datasets.

7.2.1.2. Non-Rigid

The most realistic scenario used again is PET-CT. After the images have been rigidly
aligned, 50 steps of non-rigid registration are performed. As specified in section 4.2.6,
the maximal displacement that can be applied per node and coordinate is 0.2r, with
r the influence radius of the radial basis functions. When the PET scan is used as
the reference image, this corresponds to just 10.5 millimeters. Because the differences
between the alignments before and after registration are in this small range and their
correctness again cannot be assessed without the help of a radiologist, no cuts through
the images are shown. Exemplary plots of MI? for several nodes are presented instead,
illustrating some of the problems encountered during the non-rigid pass.

Three CT-CT scenarios are employed next to objectively measure the ability of non-
rigid registration to undo complex misalignments. In each case, the rigid transformation
parameters are set to zero and initial displacements introduced at the nodes. Then, 50
steps of non-rigid registration are executed and the degree to which the displacements
are corrected determined.

Before the CT-CT results are considered in more detail, the PET-CT scenario is
addressed. Shown in figure 7.7 are plots of the estimated local mutual information
over the displacements in x and y directions at four different nodes. Because a constant
displacement in z direction of zero is used, the maximums seen in these plots do not have
to correspond to the absolutely maximal values of MI? in the vicinity. Nevertheless,
the images are able to illustrate tendencies and problems. A desirable case is shown
in (c). There is a clear maximum, offset several millimeters from the null displacement.
This is a situation in which stochastic gradient ascent can locate the optimal alignment.
The maximum in (b) is more difficult to locate precisely because the area around it is
flat and protruded. A plot of this shape is obtained when the region around a node is
dominated by a straight, elongated structure such as a large bone or the border between
patient body and background intensity. Translations of the registered image along the
structure lead to little visible change and have only small influence on the value of mutual
information, resulting in a relatively flat mutual information surface.

Examples of another frequent problem are seen in (a) and (d). Mutual information
continuously increases in some direction of the parameter plane and it is obvious that
a higher value of MI? could be achieved if the displacement per coordinate was not
limited to 10.5 millimeters. Unfortunately, the limitation cannot be waived because
it is required to guarantee that the topology of the registered image is preserved, as
explained in section 4.2.6. There are two ways in which the maximum of mutual infor-
mation could be reached. One is to position the nodes further apart, which increases
the maximal permissible displacements. However, this would lead to fewer nodes being
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Figure 7.7: Local MI? for different PET-CT nodes and alignments

generated, leading to less precise control over the non-rigid transformation. The other
option is to use a more sophisticated non-rigid transformation function that allows larger
displacements without reducing the number of parameters.

Another important reason to reconsider the transformation is the lack of a notion
of bones. Because the entire registered image is treated as non-rigid, the deformation
applied to it is based solely on the estimated derivatives of MI?. This can result in a
medically incorrect transformation where rigid bones are bent, stretched and arbitrarily
deformed instead of altering only the shapes of internal organs. To provide a distinction
between soft tissue and bones, a model based approach is required that segments and
classifies image regions first and then refrains from deforming those considered rigid.

While the results of PET-CT registration cannot be precisely evaluated and their
medical plausibility is in question, an exact assessment is possible for CT-CT. The
three scenarios employed differ in the initial misalignments introduced at the nodes.
First, the displacements are set to (7, 7, 7)T millimeters for every node. In the second
scenario, displacements are alternatingly set to (7, 7, 7)T and (−7,−7,−7)T . Finally, for
the last scenario, (−7,−7,−7)T is used throughout. Because the two identical images
are perfectly aligned when all displacements are zero, the mean square error of the (qi)k

at the beginning of the non-rigid registration pass is 72 = (−7)2 = 49. How it changes
over the course of the 50 registration steps can be seen in figure 7.8

It is apparent that for all three scenarios, the error decreases quickly at first and then
asymptotically approaches a constant value. The number of steps s2 = 50 has been
chosen so that calculations are halted and registration is finished when the rate at which
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Figure 7.8: Mean square error of displacements (qi)k for CT-CT registration with dif-
ferent initial misalignments

errors are being corrected becomes sufficiently small. Errors remaining can be attributed
to two types of nodes. The first are those whose local area is dominated by an elongated
structure. In analogy to the PET-CT scenario, local mutual information takes on a shape
such as that of figure 7.7 (b). The broad flat region around the maximum is quickly
reached but many more steps would be required to locate it precisely. A different type
of problematic nodes are those for which mutual information is highly multimodal and
stochastic gradient ascent finds an incorrect local extremum. Fortunately, the number
of such nodes is very small. They are located primarily in the area showing the patient’s
teeth which, due to metallic dental fillings, reflect the X-rays and generate smudges.

Experiments show that by tuning the constants of the registration system, the mean
square error after 50 registration steps can reliably be reduced to 0.02 for all three CT-CT
registration scenarios. However, the results presented above indicate that even without
such adjustments, the registration system is able to reliably produce a substantial re-
duction in alignment error for a range of different initial misalignments. The second
CT-CT scenario especially shows that assessment and correction of misalignment truly
occur locally at every node so that even if the initial displacements point in opposing
direction for adjacent nodes, each is adjusted toward optimal alignment.

7.2.2. Speed

The final aspects addressed are registration speed and the impact that the use of GPGPU
techniques can have on it. Three computer systems, two of them equipped with modern
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System 1 2 3
CPU Pentium M 1.6GHz Athlon XP 1.53GHz Pentium D 3.2GHz
RAM 768 MB 1024 MB 4096 MB
GPU — GeForce 6600GT GeForce 7800GT

GPU RAM — 128 MB 256 MB
Bus — AGP 4× PCI-Express 16×

Table 7.3: Computer systems used in speed experiments

NVIDIA GPUs, are used. Their relevant specifications are listed in table 7.3
Save for the GPUs, which have been fitted later, the systems roughly represent tech-

nological progression in two year steps. System 2 is oldest, assembled in 2002. System 1
is a laptop bought in 2004. The last system dates from 2006. The two GPUs are one
generation apart with the GeForce 6600GT not only older but also positioned slightly
lower within the spectrum of cards offered by NVIDIA. Besides a higher number of
fragment processors, faster clock speed, more performant bus interface and generally
improved architecture, the GeForce 7800GT has double the RAM of the 6600GT. This
is significant when calculating mutual information derivatives for the rigid transforma-
tion function with a sample size of N = 2048. Because 128 MB are not sufficient to
hold the large intermediate textures required, the alternative code path described in sec-
tion 6.3.3 is used that splits some of the computation steps into several rendering passes
using smaller textures. For all other calculations, no more than 128 MB are required.
The CPU based implementations do not need significantly more RAM than their GPU
based counterparts so that the main memory available on all three systems suffices.

Measured first is the time required for a full PET-CT registration using the different
implementations. The results are presented as averages over multiple replications in
table 7.5. Because the benefits of the non-rigid pass are dubious, it may be desirable to
execute only rigid registration, timings for which are given in table 7.6. In both cases,
the processes whose duration is assessed are precalculation and actual registration. For
GPU based implementation, this includes the time required to set up the rendering
pipeline and upload all necessary texture maps.

Only two implementations are available for the rigid pass, performing sampling and
calculation either entirely on the CPU or on the GPU. In the non-rigid case, a hybrid
approach additionally exists. The entirely GPU based solution uses the monolithic
shader of section 6.3.5.1 to sample the registered image, while the hybrid method samples
on the CPU and uploads the results to the GPU for further processing as textures. When
both rigid and non-rigid registration are executed, the implementations are combined as
shown in table 7.4.

Several observations can be made from tables 7.5 and 7.6. Looking at only the rigid
pass, it can be seen that the GPU based implementation provides a considerable speed-
up. Compared to the fastest CPU, which needs 27 seconds, the GeForce 7800GT is
6.75 times faster, requiring only 4 seconds for texture upload, preprocessing and 50
registration steps. The 6600GT is slower but still almost twice as fast as the best
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Implementation Rigid Pass Non-Rigid Pass
Combination

CPU CPU CPU
GPU GPU GPU

Hybrid GPU Hybrid

Table 7.4: Combinations of implementations used for rigid and non-rigid passes

Implementation Pentium M 1.6GHz Athlon XP 1.53GHz Pentium D 3.2GHz
Combination — GeForce 6600GT GeForce 7800GT

CPU 274 301 239
GPU 1025 709

Hybrid 116 82

Table 7.5: Duration of rigid and non-rigid PET-CT registration in seconds

Pentium M 1.6GHz Athlon XP 1.53GHz Pentium D 3.2GHz
Implementation — GeForce 6600GT GeForce 7800GT

CPU 36 35 27
GPU 15 4

Table 7.6: Duration of a rigid PET-CT registration in seconds

CPU. When both passes are considered, it is apparent that non-rigid registration takes
significantly longer and dominates the results. It is also clearly seen that the GPU based
implementation does not achieve the desired speed-up. Instead of being faster, it is up
to 2.4 times slower than the CPU in the same system. The hybrid approach, however,
is able to shorten registration time by a factor of 2.6 for system 2 and 2.9 for system 3.

This demonstrates that GPU based sampling is slow while the derivative calculation
that follows can significantly be accelerated. The lack of profiling hooks on a GPU
makes the precise cause of the slow sampling difficult to determine. However, the large
number of random accesses to texture maps required when evaluating the non-rigid
transformation function combined with the small texture caches make it likely that
pipeline stalls while waiting for data are responsible for the poor performance.

As noted in section 7.2, the number of steps conducted during registration is chosen
arbitrarily. To be able to extrapolate the results for other values of s1 and s2, it is
interesting to time a single registration step. This is done for the rigid pass in table 7.7
and for the non-rigid, in 7.8. The numbers agree with the findings of tables 7.5 and 7.6.
For rigid registration, the GPU based implementation is fastest while for non-rigid, the
hybrid approach takes the lead.

Although not part of registration, the calculation speeds for mutual information itself
are provided for completeness. In table 7.9, the average time for a single evaluation of
MI? in the rigid case is shown. As was the case for the derivatives, the GPU based
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Pentium M 1.6GHz Athlon XP 1.53GHz Pentium D 3.2GHz
Implementation — GeForce 6600GT GeForce 7800GT

CPU 752 605 577
GPU 214 63

Table 7.7: Duration of a d
dTMI? calculation for rigid PET-CT alignment in milliseconds

Pentium M 1.6GHz Athlon XP 1.53GHz Pentium D 3.2GHz
Implementation — GeForce 6600GT GeForce 7800GT

CPU 5108 5417 4139
GPU 20509 14441

Hybrid 2005 1651

Table 7.8: Duration of a d
dTMI? calculation for all nodes in non-rigid PET-CT alignment

in milliseconds

implementation is faster. Interestingly, the oldest CPU, made by AMD, outperforms
the other two chips by intel.

The results for non-rigid MI? are shown in table 7.10. A total of four implementations
are evaluated. As before, GPU corresponds to non-rigid sampling using a monolithic
shader and GPU based calculation. GPU 2 employs the multiple shader approach of
section 6.3.5.2 instead. This allows the question to be answered whether better perfor-
mance may be achieved by breaking up the large shader into a series of smaller steps.
As can clearly be seen, the opposite is the case. A series of smaller shaders not only
does not provide a benefit but leads to an additional increase in computation time. The
fastest technique again is the hybrid approach of CPU based sampling and calculation
on the GPU.

Pentium M 1.6GHz Athlon XP 1.53GHz Pentium D 3.2GHz
Implementation — GeForce 6600GT GeForce 7800GT

CPU 116 64 86
GPU 30 12

Table 7.9: Duration of a MI? calculation for rigid PET-CT alignment in milliseconds

Pentium M 1.6GHz Athlon XP 1.53GHz Pentium D 3.2GHz
Implementation — GeForce 6600GT GeForce 7800GT

CPU 1675 1626 1349
GPU 17088 12220

GPU 2 41808 32301
Hybrid 861 636

Table 7.10: Duration of a MI? calculation for all nodes in non-rigid PET-CT alignment
in milliseconds
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8. Discussion

The goal of this thesis has been to develop a registration system that is suited as best
as possible for the solution of the problem stated in section 1.3.1. The main aims were
to achieve fully automatic, precise registration of multi-modal tomographic datasets and
to perform the required calculations quickly and efficiently, despite the large amounts
of data involved. Experiments have shown that the system meets some of these goals
while in other areas, future improvements are possible.

At the core of the registration system is the similarity metric MI?. Based on the work
published in [Vio95], it is an estimate of mutual information calculated from two random
samples of size N using a Parzen window technique. The concept of mutual information
is popular in multi-modal registration because it does not assume a linear relationship
between the intensities of corresponding points in the two images. As the plots presented
in the previous chapter indicate, the measure has shown to be appropriate for multi-
modal tomographic datasets. Save for the noise introduced by randomized estimation
and a few problematic nodes in the non-rigid pass, a unimodal metric is obtained which
smoothly increases toward a single maximum that coincides with the optimal alignment
of reference and registered image.

More important to the registration process is the fact that the estimated derivatives of
MI? also show the desired behavior. While they are more noisy than mutual information
itself, they generally have correct signs which allows them to be used in an iterative search
for the optimal alignment. Whenever a stochastic approximation is used, noise is to be
expected and must be tolerated to some degree. However, experiments have shown that
the noise amplitude can be reduced to an acceptable level by increasing N and σ2.

Some of the results of [Vio95] could not be reproduced. To obtain a reliable measure
whose derivatives are of sufficient quality for robust registration, the sample size N had
to be increased far beyond the proposed value of 50, even at the pyramid level l = 4
with the smallest images. Also, the automatic calculation of Parzen window variances
has been found not to work due to the limited precision of a computer. However, since
the variances have shown to have mostly a smoothing effect and the metric is largely
insensitive to their precise values, good results have been achieved with empirically
determined constant values.

While MI? provides a reliable measure of alignment quality and can be used to drive
the registration process, the question should be posed whether a faster metric exists.
The Parzen window technique proposed in [Vio95] has the advantages of being simple
and nonparametric. Its major weakness is the complexity of the resulting estimated
density function. A Gaussian bell shape is centered at every sampling point in sample
SA so that to evaluate the function, an iteration over N points is necessary. Because
to estimate either mutual information or its derivatives, the density function must be
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evaluated for each point in SB, the resulting complexity is O
(
N2
)
.

Instead of centering a Gaussian bell shape at each point in SA, a substantially smaller
number of Gaussians could be used, leading to the Gaussian mixture model approach
described in section 2.5.2. Its downside is that the mean and covariance matrix of each
Gaussian must be calculated from SA before the density function can be used. However,
the benefit then obtained is that the resulting estimated density function consists of only
a small constant number of Gaussians and can be evaluated in O (1).

One possibility for the estimation of the parameters of a Gaussian mixture model is
described in [Bil98]. Using a fixed number of iterative steps of the EM algorithm, an
estimate can be obtained in O (N). The evaluation of this estimate for every point in
SB then again requires O (N), reducing the overall complexity from O

(
N2
)

to O (N).
This reduces not only the number of computation steps but also the amount of memory
needed. In the GPU based implementations developed in this thesis, the large interme-
diary textures of size N ×N required effectively limit the usable sample size. With both
time and space complexity O (N), much larger sample sizes could be used. As noted in
the previous chapter, this is desirable at pyramid level l = 0.

Another factor that greatly affects the performance of the similarity metric is the
programming model used for its implementation. The registration system of chapter 5
uses traditional, sequential implementations on a single CPU. This type of code is simple
to develop and understand but does not necessarily lead to optimal performance. On the
GPU, parallel execution is possible and the implementations in chapter 6 are adapted to
this paradigm. Whenever calculations are independent and can be executed concurrently,
they are represented as different fragments so that the current shader may be run for
them in parallel. This approach has led to considerable speed-ups for some calculations
while for others, computation time has increased.

It is impossible to precisely analyze the execution of a GPU based implementation
due the lack of profiling hooks and exact documentation. However, generic models and
rules for parallel computation are available which can help to understand why some
algorithms experience a speed-up and others do not. One important observation is
that not all computations benefit from parallel execution. With Ts the amount of time
spent in operations that must be executed sequentially, Tp the time for those which can
be parallelized and np the number of processing units, such as shaders, Amdahl’s law
[KGGK94] states that an upper bound on the speed-up possible is:

S =
Ts + Tp

Ts + Ts
np

(8.1)

This value could only be reached if the parallelizable calculations can be split into
np equally sized portions and no overhead is incurred. The equation also shows that
with growing np, a maximal speed-up is approached asymptotically. A more realistic
view of parallel computation is incorporated into the LogP model [CKP+93], which
also considers the costs of communication between the processing units. Each unit is
additionally limited by the speed of its memory interface so that massively parallel
execution of small steps may be slower than larger, less parallelized steps due to the
constant reading and writing of intermediate results.

134



Because of its specialized hardware, not all of these points apply to a GPU. While the
facts that some calculations can only be performed sequentially and that the memory
interface can become a bottleneck are true, direct communication between the fragment
shaders is not possible. An exchange of data is only possible by writing to the framebuffer
and then reading back these values in another rendering pass. This, in turn, benefits
from a shared graphics memory used by all processors. No messages need to explicitly
be passed as the same textures are available to all fragment processors. Nevertheless, it
follows that if a calculation either cannot be parallelized to a high degree or performs
too many memory accesses, its performance on the GPU may suffer. This could be
observed in the previous chapter in the difference between the monolithic and multiple
shader implementations of the non-rigid transformation function. The multiple shader
version is more parallelized but the much higher number of memory accesses required
completely eliminates this advantage.

Although an upper bound on the speed-up could be calculated, only experimentation
can show how much is actually gained. For the GPU based implementations developed
in this thesis, the results have been presented in the previous chapter. It has been found
that rigid registration can be performed in just 4 seconds with a speed-up of 6.75 over
the fastest CPU. In the non-rigid pass, the evaluation of the transformation function
has shown to perform poorly on the GPU. If, however, sampling remains on the CPU
but the actual calculation of mutual information derivatives is moved onto a GPU, a
speed-up of 2.9 is obtained. How further improvements could be made will be addressed
in the next section.

Considered now are the transformation functions and search spaces. For the rigid
pass, the experiments conducted have clearly shown the chosen transformation type to
be suitable. Since the scales of the two datasets can be matched automatically using
DICOM metadata, the only rigid differences between the images to be expected are
translations and small rotations. As seen in the previous chapter, the transformation
function could be used to undo these alignments with a very high precision for CT-
CT. Equally convincing results were obtained for PET-CT, as far as this can be judged
without the help of a radiologist. Because it can be expressed as a simple 4× 4 matrix,
the transformation function and its derivatives have also proven to be quick to calculate
via matrix-vector operations.

The situation is different for the non-rigid transformation function. Based on the
results of the previous chapter, it must be questioned whether the non-rigid pass is
actually useful and if so, what needs to be done to ensure that plausible adjustments
are obtained. Some of the problems encountered were multimodal or partially flat local
MI? surfaces, making the localization of the precise maximum very difficult. However,
even when the maximum can be located, the question remains in how far the resulting
alignment is medically valid. While the search space is constrained so as to preserve
topology, no rules are present to ensure anatomical correctness.

A model of the anatomical structure in the registered image is required. The aim of the
non-rigid pass is to undo small local misalignments due to changes in the shapes of the
patient’s internal organs. Only these should be deformed and rigid bones left untouched.
This can be ensured only if constraints are introduced that express which areas may be
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deformed and by how much. The model may influence the transformation parameters
by clipping them to valid ranges or removing nodes for which no local displacements are
desired. Another option is to leave the parameters unaltered but integrate the model into
the evaluation of the transformation function. In this case, the qi as well as the output
of the model are interpreted as forces acting on the registered image and deforming its
shape.

In both cases, before the model may be used, it must be constructed. It can be
built only from an anatomical scan as a physiological dataset contains no information
about the structures to be modeled. Unfortunately, reliable automatic segmentation
is still an unsolved problem and it is unlikely that a satisfactory distinction between
soft tissue and bones could automatically be computed. This step therefore necessitates
human intervention, incurring a cost for the time spent by a skilled operator directing
the segmentation process.

The node arrangements used in this thesis are relatively widely spaced. If the changes
to be undone are minimal, the radius of influence of each node should be decreased to
gain more local control. However, this also means an increase in the total number of
nodes and as a consequence, in registration time. If the number of nodes is increased,
an option to be considered would be the use of a completely different transformation
function. While the Wendland polynomials used are simple and in principle fast to
evaluate, no GPU acceleration of their computation has been possible. Experiments may
show that a different type of non-rigid transformation function can be more efficiently
evaluated on such hardware.

While a model and a tight node spacing may be able to limit the displacements applied
to anatomically plausible ranges, the adjustments required can be expected to be very
small. Deformations of internal organs occur between pre- and postoperative images
where for example tissue has been removed or a fractured bone adjusted. When the
patient is placed in almost identical poses and the scans are taken in close succession,
the probability of changes to the shapes of internal organs that are large enough to
affect diagnosis should be minimal. The computationally expensive and time-consuming
non-rigid pass, especially when coupled with the manual or semi-automatic construction
of a model, thus appears to provide little benefit at great cost.

The last component of the registration system is its search strategy. With stochastic
gradient ascent, a very simple approach has been chosen. However, experiments have
shown that it is able to locate the maximum of MI? despite random noise and large
initial misalignments. For the non-rigid pass, the CT-CT experiments have also shown
that parameters are adjusted toward the optimum. Only nodes for which the local
image structure leads to a multimodal or very flat local MI? surface have proven prob-
lematic. A different strategy may be able to overcome these problems. One approach for
multimodal surfaces is to perform the registration multiple times with different initial
alignments and return the alignment produced that leads to the highest value of MI?.
A completely different family of search strategies is found in the genetic algorithms,
which treat each potential alignment as an individual and generate new alignments by
mutation, recombination and survival of the fittest.

Also part of the search strategy is the multiresolution technique. As was the case with
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stochastic gradient descent, it has shown to be successful. The small images used at
the beginning of the registration process lead to a very high quality metric that allows
the region in which the optimal alignment may be found to be quickly located. The
original images at pyramid level l = 0 allow the precise maximum of MI? to be found.
What could be reconsidered is whether all intermediate pyramid levels are required. The
difference in the location of the maximum from one level to the next is so small that
gradient ascent should be able to locate the optimum also when one or more pyramid
levels are skipped, allowing registration time to be shortened.

It would have been desirable to compare the entire registration system to other similar
systems, both in terms of quality and speed. Unfortunately, this was not possible. Pub-
lications do not contain source code and use different example scenarios so that results
cannot directly be compared. Also, many systems require manual intervention making
a fair comparison with a fully automatic system impossible. However, the computation
times obtained for large volumetric images are reasonable, as is the registration quality,
at least for the rigid pass where it can be judged.

8.1. Future Work

Work based on the registration system developed in this thesis could be taken in differ-
ent directions. However, before any adjustments or modifications are made, it appears
sensible to properly test the system. While speed has been measured thoroughly, the
registration quality achieved for two tomographic datasets is hardly representative. A
larger body of physiological and anatomical dataset pairs should be obtained, the con-
stants of the registration system adjusted using some of these pairs and the system then
evaluated using the remaining. With the help of a radiologist, this would allow the
quality of registration to be properly assessed. It should also highlight the shortcomings
of the system and areas where improvements are necessary.

Although much work has been put into an efficient implementation and considerable
speed-ups have been achieved on the GPU, more registration speed may be desired. It
appears unlikely that the shaders can be substantially improved to produce a significantly
faster computation. The approach to be followed instead should be to use different, more
powerful hardware. An obvious step would be to use SLI, the liking of two GPUs. This
would require no changes to shaders or the code that drives the registration, as the entire
coordination between the two GPUs is handled by their driver. However, only minimal
control is provided over how data and work is split betwen the two graphics cards so that
no additional optimizations are possible and a large overhead may have to be accepted
for the exchange of information between the GPUs.

To gain better control, a parallel implementation on a cluster of CPUs could be in-
vestigated. The implementations could largely follow those developed for the GPU and
described in chapter 6 as they are already parallelized. However, because the distri-
bution of work and data can be controlled, additional optimizations are possible. The
goal should be to equally divide the work among the CPUs and minimize the need for
communication between them.
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How the GPU based implementations may be adapted is shown here using the cal-
culation of d

dTMI? for the rigid transformation as an example. To be evaluated are
equations (6.4) to (6.6). The steps of the GPU implementation are outlined in fig-
ure 6.5. The most important observation to be made about the formulas is that except
for the nested sum in equation (6.4), which is evaluated last, the calculations performed
for all points xi ∈ SB are independent of each other. Data and work should thus be
distributed so that each CPU handles a subset S′B ⊆ SB.

The sampling of image intensities and derivatives can directly be parallelized as the
calculation of the transformation function and the retrieval of image intensities are done
independently for each point. Every CPU should handle equally sized subsets S′B and
S′A ⊆ SA. After sampling has completed, the data obtained for sample SA must be
exchanged to provide a complete sample at each CPU. Then, all subsequent steps can
be performed concurrently by the CPUs as each only considers pairs (xi, xj) ∈ S′B ×SA.
After weight numerators have been calculated and added, denominators computed, the
derivatives weighted and summed, the sums calculated by each CPU have to be retrieved
by one and added to calculate the final derivatives.

Similar implementations are possible for the other parts of the registration system.
In all cases, the communication overhead is minimal. However, communication is still
required several times over the course of each calculation. To further reduce this need,
parallelization may be performed at a different level. Each CPU may calculate the entire
derivatives d

dTMI? for an alignment, beginning with the sampling up to the computation
of the final values. Parallelism is achieved by giving each CPU a different alignment to
work on, thus implementing multiple initial alignments or a genetic algorithm. For the
non-rigid pass, every CPU could also evaluate the local derivatives at a different node as
the calculations for all nodes are completely independent. Because the communication
overhead is small and most computations can be parallelized, CPU cluster based versions
should be evaluated for all implementations in chapter 6.

It could be attempted to further accelerate the non-rigid transformation function as
well, but it appears more important to first add a model, as described in the previous
section, so that medically plausible results are produced. If the non-rigid pass is to be
retained, which is a question that cannot be fully answered until thorough experiments
on a larger statistical basis have been performed, a model is clearly necessary. While it
is doubtful that automatic segmentation will be of sufficient quality, it should be inves-
tigated to ensure that manual intervention is not needlessly introduced into the system.
Different models could be used, possibly combined with another family of transformation
functions. Again, the plausibility of their results must be assessed by a radiologist and a
model chosen that protects bones from deformation while allowing it for internal organs.

Finally, the results of this thesis could be applied to an entirely different area. As
outlined in section 1.2.1, multi-modal registration is found in many other application
areas and a fast and efficient system could be beneficial to them. Because mutual
information is a very robust metric applicable to far more than medical images, it is
likely that the registration system can easily be adapted to many different areas. Yet
again, the non-rigid transformation function may be the component that proves not
viable and has to be removed.
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A.1. Rigid Sampling

A.1.1. SampleReference

uniform sampler3D data;
uniform sampler2D samplingPositions;

void main() {
vec3 samplingPoint = texture2D(samplingPositions, gl_TexCoord[0].xy).xyz;
gl_FragColor.r = 255. * texture3D(data, samplingPoint).r;

}

A.1.2. SampleRegistered

uniform sampler3D data;
uniform sampler2D samplingPositions;
uniform mat4 transformation;

void main() {
vec3 samplingPoint = (transformation

* texture2D(samplingPositions, gl_TexCoord[0].xy)).xyz;
gl_FragColor.r = 255. * texture3D(data, samplingPoint).r;

}

A.1.3. SampleRegisteredDerivatives

uniform sampler3D data;
uniform sampler2D samplingPositions;
uniform mat4 transformation;
uniform vec3 offset[3];
uniform mat3 transformationTranslationDerivative;
uniform mat4 transformationRotationDerivative[3];

void main() {
vec4 worldPosition = texture2D(samplingPositions, gl_TexCoord[0].xy);
vec3 samplingPoint = (transformation * worldPosition).xyz;

float intensity = 255. * texture3D(data, samplingPoint).r;

vec3 gradient = vec3(
255. * texture3D(data, samplingPoint + offset[0]).r - intensity,
255. * texture3D(data, samplingPoint + offset[1]).r - intensity,
255. * texture3D(data, samplingPoint + offset[2]).r - intensity);

mat3 innerDerivative = mat3(
(transformationRotationDerivative[0] * worldPosition).xyz,
(transformationRotationDerivative[1] * worldPosition).xyz,
(transformationRotationDerivative[2] * worldPosition).xyz);
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gl_FragData[0].r = intensity;
gl_FragData[1].rgb = gradient * transformationTranslationDerivative;
gl_FragData[2].rgb = gradient * innerDerivative;

}

A.2. Rigid Mutual Information Derivative

A.2.1. Weights

uniform sampler2DRect gaussian1D;
uniform sampler2DRect gaussian2D;
uniform sampler2DRect sampleX;
uniform sampler2DRect sampleY;

void main() {
vec2 sampleACoordinates = gl_TexCoord[0].xy;
vec2 sampleBCoordinates = gl_TexCoord[0].zw;
vec2 sampleA = vec2(texture2DRect(sampleX, sampleACoordinates).r,

texture2DRect(sampleY, sampleACoordinates).r);
vec2 sampleB = vec2(texture2DRect(sampleX, sampleBCoordinates).r,

texture2DRect(sampleY, sampleBCoordinates).r);
vec2 sampleDifference = abs(sampleA - sampleB) + vec2(.5, .5);

gl_FragData[0].r = texture2DRect(gaussian1D,
vec2(sampleDifference.g, .5)).r;

gl_FragData[1].r = texture2DRect(gaussian2D, sampleDifference).r;
}

A.2.2. AddWeights

uniform sampler2DRect inputData;

void main() {
float left = texture2DRect(inputData, gl_TexCoord[0].xz).r;
float right = texture2DRect(inputData, gl_TexCoord[0].yz).r;
gl_FragColor.r = left + right;

}

A.2.3. WeightMultiplier

uniform sampler2DRect inputData;
uniform float varianceReciprocal;

void main() {
float denominator = texture2DRect(inputData, gl_TexCoord[0].xy).r;

if (denominator > 0.)
gl_FragColor.r = varianceReciprocal / denominator;

else
gl_FragColor.r = 0.;

}

A.2.4. WeightedDerivatives

uniform sampler2DRect sample;
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uniform sampler2DRect weightMultipliersV;
uniform sampler2DRect weightMultipliersW;
uniform sampler2DRect weightsV;
uniform sampler2DRect weightsW;
uniform sampler2DRect sampleTranslationDerivatives;
uniform sampler2DRect sampleRotationDerivatives;

uniform float varianceReciprocal;

void main() {
vec2 coordinatesA = gl_TexCoord[0].xy;
vec2 coordinatesB = gl_TexCoord[0].zw;
vec2 coordinatesWeightMultiplier = gl_TexCoord[0].yz;
vec2 coordinatesWeight = gl_TexCoord[0].xz;

float multiplier =
(texture2DRect(sample, coordinatesB).r

- texture2DRect(sample, coordinatesA).r)
* (texture2DRect(weightMultipliersV, coordinatesWeightMultiplier).r
* texture2DRect(weightsV, coordinatesWeight).r
- texture2DRect(weightMultipliersW, coordinatesWeightMultiplier).r
* texture2DRect(weightsW, coordinatesWeight).r);

gl_FragData[0].rgb =
multiplier

* (texture2DRect(sampleTranslationDerivatives, coordinatesB).rgb
- texture2DRect(sampleTranslationDerivatives, coordinatesA).rgb);

gl_FragData[1].rgb =
multiplier

* (texture2DRect(sampleRotationDerivatives, coordinatesB).rgb
- texture2DRect(sampleRotationDerivatives, coordinatesA).rgb);

}

A.2.5. AddWeightedDerivatives

uniform sampler2DRect inputData;

void main() {
vec3 topLeft = texture2DRect(inputData, gl_TexCoord[0].xz).rgb;
vec3 topRight = texture2DRect(inputData, gl_TexCoord[0].yz).rgb;
vec3 bottomLeft = texture2DRect(inputData, gl_TexCoord[0].xw).rgb;
vec3 bottomRight = texture2DRect(inputData, gl_TexCoord[0].yw).rgb;

gl_FragColor.rgb = topLeft + topRight + bottomLeft + bottomRight;
}

A.3. Rigid Mutual Information

A.3.1. GaussianPDF1D

uniform sampler2DRect gaussian;
uniform sampler2DRect sample;

void main() {
float sampleA = texture2DRect(sample, gl_TexCoord[0].xy).r;
float sampleB = texture2DRect(sample, gl_TexCoord[0].zw).r;
gl_FragColor.r = texture2DRect(gaussian,
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vec2(abs(sampleA - sampleB) + .5, .5));
}

A.3.2. GaussianPDF2D

uniform sampler2DRect gaussian;
uniform sampler2DRect sampleX;
uniform sampler2DRect sampleY;

void main() {
vec2 sampleACoordinates = gl_TexCoord[0].xy;
vec2 sampleBCoordinates = gl_TexCoord[0].zw;
vec2 sampleA = vec2(texture2DRect(sampleX, sampleACoordinates).r,

texture2DRect(sampleY, sampleACoordinates).r);
vec2 sampleB = vec2(texture2DRect(sampleX, sampleBCoordinates).r,

texture2DRect(sampleY, sampleBCoordinates).r);
gl_FragColor.r =
texture2DRect(gaussian, abs(sampleA - sampleB) + vec2(.5, .5)).r;

}

A.3.3. AddHorizontally

uniform sampler2DRect inputData;

void main() {
float left = texture2DRect(inputData, gl_TexCoord[0].xz).r;
float right = texture2DRect(inputData, gl_TexCoord[0].yz).r;
gl_FragColor.r = left + right;

}

A.3.4. ScaleLog

void main() {
float probability = texture2DRect(inputData, gl_TexCoord[0].xy).r

* sampleSizeReciprocal;
if (probability > .000000001)
gl_FragColor.r = log(probability);

else
gl_FragColor.r = 0.;

}

A.3.5. AddVertically

uniform sampler2DRect inputData;

void main() {
float top = texture2DRect(inputData, gl_TexCoord[0].xy).r;
float bottom = texture2DRect(inputData, gl_TexCoord[0].xz).r;
gl_FragColor.r = top + bottom;

}
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A.4. Non-Rigid Sampling, Monolithic Shader

A.4.1. Classify

uniform sampler3D data;
uniform sampler2DRect gridPointPositions;
uniform sampler2DRect classificationPattern;

void main() {
vec3 gridPoint = texture2DRect(gridPointPositions, gl_TexCoord[0].yz).xyz;
vec3 patternPoint = texture2DRect(classificationPattern,

gl_TexCoord[0].xz).xyz;
gl_FragColor.r = step(.03, texture3D(data, gridPoint + patternPoint).r);

}

A.4.2. AddClassifications

uniform sampler2DRect inputData;

void main() {
float left = texture2DRect(inputData, gl_TexCoord[0].xz).r;
float right = texture2DRect(inputData, gl_TexCoord[0].yz).r;
gl_FragColor.r = left + right;

}

A.4.3. CopyNodeWeight

uniform sampler2DRect gridPointNodes;
uniform sampler2DRect nodeWeights;

void main() {
vec2 nodes = vec2(gl_TexCoord[0].z,

texture2DRect(gridPointNodes, gl_TexCoord[0].xy).w);

gl_FragColor.r = texture2DRect(nodeWeights, nodes).x;
}

A.4.4. WeightDisplacement

uniform sampler2DRect nodeWeights;
uniform sampler2DRect displacements;

void main() {
float weight = texture2DRect(nodeWeights, gl_TexCoord[0].xy).r;
vec3 displacement = texture2DRect(displacements, gl_TexCoord[0].xz).xyz;
gl_FragColor.rgb = weight * displacement;

}

A.4.5. AddWeightedDisplacements

uniform sampler2DRect inputData;

void main() {
vec3 left = texture2DRect(inputData, gl_TexCoord[0].xz).rgb;
vec3 right = texture2DRect(inputData, gl_TexCoord[0].yz).rgb;
gl_FragColor.rgb = left + right;

}
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A.4.6. CopyCoefficient

uniform sampler2DRect gridPointNodes;
uniform sampler2DRect coefficients;

void main() {
vec2 node = texture2DRect(gridPointNodes, gl_TexCoord[0].xy).xw;
gl_FragColor.rgb = texture2DRect(coefficients, node).xyz;

}

A.4.7. SampleReference

uniform sampler3D data;
uniform sampler2DRect nodePositions;
uniform sampler2D samplingPositions;

void main() {
vec3 samplingPoint = texture2DRect(nodePositions, gl_TexCoord[0].xz).xyz

+ texture2D(samplingPositions, gl_TexCoord[0].yz).xyz;
gl_FragColor.r = 255. * texture3D(data, samplingPoint).r;

}

A.4.8. SampleRegistered

#define CoordinateNodes 8

#define offsetX 1
#define offsetY (CoordinateNodes + 3)
#define offsetZ (CoordinateNodes + 3) * (CoordinateNodes + 3)

uniform sampler3D data;
uniform sampler2DRect nodePositions;
uniform sampler2D samplingPositions;
uniform sampler3D rbfs;
uniform sampler2DRect coefficients;
uniform mat4 rigidTransformation;

void main() {
vec4 samplingPointInformation =

texture2DRect(nodePositions, gl_TexCoord[0].xz)
+ texture2D(samplingPositions, gl_TexCoord[0].yz);

vec3 worldSamplingPoint = samplingPointInformation.xyz;
vec2 firstGridPoint = vec2(samplingPointInformation.w, .5);

worldSamplingPoint -=
texture3D(rbfs, vec3( 1./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3( 3./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetX, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3( 5./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2(2 * offsetX, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3( 7./64., gl_TexCoord[0].yz)).r
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* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetY, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3( 9./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetX + offsetY, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(11./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2(2 * offsetX + offsetY, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(13./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( 2 * offsetY, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(15./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetX + 2 * offsetY, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(17./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2(2 * offsetX + 2 * offsetY, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(19./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(21./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetX + offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(23./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2(2 * offsetX + offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(25./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetY + offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(27./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetX + offsetY + offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(29./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2(2 * offsetX + offsetY + offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(31./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( 2 * offsetY + offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(33./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetX + 2 * offsetY + offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(35./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2(2 * offsetX + 2 * offsetY + offsetZ, 0.)).xyz;
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worldSamplingPoint -=
texture3D(rbfs, vec3(37./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( 2 * offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(39./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetX + 2 * offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(41./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2(2 * offsetX + 2 * offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(43./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetY + 2 * offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(45./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetX + offsetY + 2 * offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(47./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2(2 * offsetX + offsetY + 2 * offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(49./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( 2 * offsetY + 2 * offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(51./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetX + 2 * offsetY + 2 * offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(53./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2(2 * offsetX + 2 * offsetY + 2 * offsetZ, 0.)).xyz;

vec3 samplingPoint =
(rigidTransformation * vec4(worldSamplingPoint, 1.)).xyz;

gl_FragColor.r = 255. * texture3D(data, samplingPoint).r;
}

A.4.9. TransformationDerivativeWorld

#define CoordinateNodes 8

#define offsetX 1
#define offsetY (CoordinateNodes + 3)
#define offsetZ (CoordinateNodes + 3) * (CoordinateNodes + 3)

uniform sampler2DRect nodePositions;
uniform sampler2D samplingPositions;
uniform sampler3D rbfs;
uniform sampler2DRect weights;

void main() {
vec2 firstGridPoint = vec2(
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texture2DRect(nodePositions, gl_TexCoord[0].xz).w
+ texture2D(samplingPositions, gl_TexCoord[0].yz).w, gl_TexCoord[0].z);

gl_FragColor.r = 0.;

gl_FragColor.r -=
texture3D(rbfs, vec3( 1./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
).r;

gl_FragColor.r -=
texture3D(rbfs, vec3( 3./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2( offsetX, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3( 5./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2(2. * offsetX, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3( 7./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2( offsetY, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3( 9./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2( offsetX + offsetY, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(11./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2(2. * offsetX + offsetY, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(13./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2( 2. * offsetY, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(15./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2( offsetX + 2. * offsetY, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(17./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2(2. * offsetX + 2. * offsetY, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(19./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2( offsetZ, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(21./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2( offsetX + offsetZ, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(23./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2(2. * offsetX + offsetZ, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(25./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2( offsetY + offsetZ, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(27./64., gl_TexCoord[0].yz)).r
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* texture2DRect(weights, firstGridPoint
+ vec2( offsetX + offsetY + offsetZ, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(29./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2(2. * offsetX + offsetY + offsetZ, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(31./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2( 2. * offsetY + offsetZ, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(33./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2( offsetX + 2. * offsetY + offsetZ, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(35./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2(2. * offsetX + 2. * offsetY + offsetZ, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(37./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2( 2. * offsetZ, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(39./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2( offsetX + 2. * offsetZ, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(41./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2(2. * offsetX + 2. * offsetZ, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(43./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2( offsetY + 2. * offsetZ, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(45./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2( offsetX + offsetY + 2. * offsetZ, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(47./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2(2. * offsetX + offsetY + 2. * offsetZ, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(49./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2( 2. * offsetY + 2. * offsetZ, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(51./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2( offsetX + 2. * offsetY + 2. * offsetZ, 0.)).r;

gl_FragColor.r -=
texture3D(rbfs, vec3(53./64., gl_TexCoord[0].yz)).r

* texture2DRect(weights, firstGridPoint
+ vec2(2. * offsetX + 2. * offsetY + 2. * offsetZ, 0.)).r;

}
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A.4.10. SampleRegisteredDerivative

#define CoordinateNodes 8

#define offsetX 1
#define offsetY (CoordinateNodes + 3)
#define offsetZ (CoordinateNodes + 3) * (CoordinateNodes + 3)

uniform sampler3D data;
uniform sampler2DRect nodePositions;
uniform sampler2D samplingPositions;
uniform sampler3D rbfs;
uniform sampler2DRect coefficients;
uniform sampler2DRect transformationDerivativesWorld;
uniform vec3 offset[3];
uniform mat4 rigidTransformationToVoxelTexture;
uniform mat3 rigidTransformationToVolume;

void main() {
vec4 samplingPointInformation =

texture2DRect(nodePositions, gl_TexCoord[0].xz)
+ texture2D(samplingPositions, gl_TexCoord[0].yz);

vec3 worldSamplingPoint = samplingPointInformation.xyz;
vec2 firstGridPoint = vec2(samplingPointInformation.w, .5);

worldSamplingPoint -=
texture3D(rbfs, vec3( 1./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3( 3./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetX, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3( 5./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2(2 * offsetX, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3( 7./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetY, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3( 9./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetX + offsetY, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(11./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2(2 * offsetX + offsetY, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(13./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( 2 * offsetY, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(15./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetX + 2 * offsetY, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(17./64., gl_TexCoord[0].yz)).r
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* texture2DRect(coefficients, firstGridPoint
+ vec2(2 * offsetX + 2 * offsetY, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(19./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(21./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetX + offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(23./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2(2 * offsetX + offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(25./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetY + offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(27./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetX + offsetY + offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(29./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2(2 * offsetX + offsetY + offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(31./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( 2 * offsetY + offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(33./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetX + 2 * offsetY + offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(35./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2(2 * offsetX + 2 * offsetY + offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(37./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( 2 * offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(39./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetX + 2 * offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(41./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2(2 * offsetX + 2 * offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(43./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetY + 2 * offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(45./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
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+ vec2( offsetX + offsetY + 2 * offsetZ, 0.)).xyz;
worldSamplingPoint -=

texture3D(rbfs, vec3(47./64., gl_TexCoord[0].yz)).r
* texture2DRect(coefficients, firstGridPoint
+ vec2(2 * offsetX + offsetY + 2 * offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(49./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( 2 * offsetY + 2 * offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(51./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2( offsetX + 2 * offsetY + 2 * offsetZ, 0.)).xyz;

worldSamplingPoint -=
texture3D(rbfs, vec3(53./64., gl_TexCoord[0].yz)).r

* texture2DRect(coefficients, firstGridPoint
+ vec2(2 * offsetX + 2 * offsetY + 2 * offsetZ, 0.)).xyz;

vec3 samplingPoint =
(rigidTransformationToVoxelTexture * vec4(worldSamplingPoint, 1.)).xyz;

float intensity = 255. * texture3D(data, samplingPoint).r;

vec3 gradient = vec3(
255. * texture3D(data, samplingPoint + offset[0]).r - intensity,
255. * texture3D(data, samplingPoint + offset[1]).r - intensity,
255. * texture3D(data, samplingPoint + offset[2]).r - intensity);

gl_FragColor = vec4(intensity,
texture2DRect(transformationDerivativesWorld, gl_TexCoord[1].xy).r

* rigidTransformationToVolume * gradient);

A.5. Non-Rigid Sampling, Multiple Shaders

A.5.1. WeightCoefficients

uniform sampler3D rbfs;
uniform sampler2D firstGridPoints;
uniform sampler1D gridOffsets;
uniform sampler2DRect coefficients;
uniform vec2 nodeGridPoint;

void main() {
float rbf = texture3D(rbfs, gl_TexCoord[0].xyz).r;
vec2 gridPoint = nodeGridPoint
+ texture2D(firstGridPoints, gl_TexCoord[0].yz).xw
+ texture1D(gridOffsets, gl_TexCoord[0].x).xw;

vec3 coefficient = texture2DRect(coefficients, gridPoint).xyz;

gl_FragColor.rgb = rbf * coefficient;
}

A.5.2. AddWeightedCoefficients

uniform sampler2DRect inputData;

void main() {
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vec3 top = texture2DRect(inputData, gl_TexCoord[0].xy).xyz;
vec3 bottom = texture2DRect(inputData, gl_TexCoord[0].xz).xyz;
gl_FragColor.rgb = top + bottom;

}

A.5.3. SampleRegistered

uniform sampler3D data;
uniform sampler2DRect samplingPositions;
uniform sampler2DRect nonRigidTransformations;
uniform vec3 nodePosition;
uniform mat4 rigidTransformation;

void main() {
vec3 worldSamplingPoint =

nodePosition
+ texture2DRect(samplingPositions, gl_TexCoord[0].xy).xyz
- texture2DRect(nonRigidTransformations, gl_TexCoord[0].xz).xyz;

vec3 samplingPoint =
(rigidTransformation * vec4(worldSamplingPoint, 1.)).xyz;

gl_FragColor.r = 255. * texture3D(data, samplingPoint).r;
}

A.6. Non-Rigid Mutual Information Derivative

A.6.1. Weights

Identical to A.2.1.

A.6.2. AddWeights

Identical to A.2.2.

A.6.3. WeightMultiplier

Identical to A.2.3.

A.6.4. WeightedDerivatives

uniform sampler2DRect sampleAndDerivatives;
uniform sampler2DRect weightMultipliersV;
uniform sampler2DRect weightMultipliersW;
uniform sampler2DRect weightsV;
uniform sampler2DRect weightsW;
uniform float varianceReciprocal;

void main() {
vec2 coordinatesA = gl_TexCoord[1].xy;
vec2 coordinatesB = gl_TexCoord[1].zw;
vec2 coordinatesWeightMultiplier = gl_TexCoord[0].yz;
vec2 coordinatesWeight = gl_TexCoord[0].xz;

vec4 sampleAndDerivativeDifference =
texture2DRect(sampleAndDerivatives, coordinatesB)
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- texture2DRect(sampleAndDerivatives, coordinatesA);

float multiplier =
sampleAndDerivativeDifference.r

* (texture2DRect(weightMultipliersV, coordinatesWeightMultiplier).r
* texture2DRect(weightsV, coordinatesWeight).r
- texture2DRect(weightMultipliersW, coordinatesWeightMultiplier).r
* texture2DRect(weightsW, coordinatesWeight).r);

gl_FragColor.rgb =
multiplier * sampleAndDerivativeDifference.gba;

}

A.6.5. AddWeightedDerivatives

Identical to A.2.5.

A.7. Non-Rigid Mutual Information

A.7.1. GaussianPDF1D

Identical to A.3.1.

A.7.2. GaussianPDF2D

Identical to A.3.2.

A.7.3. AddHorizontally

Identical to A.3.3.

A.7.4. ScaleLog

Identical to A.3.4.

A.7.5. AddVertically

Identical to A.3.5.
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